期刊文献+

The Fusion of Image Based on OPTFR-Multiwavelets

The Fusion of Image Based on OPTFR-Multiwavelets
原文传递
导出
摘要 From the view of Optimum Time-Frequency Resolution (OPTFR), Jiang constructedorthogonal and symmetric multiwavelets Ψ_2, which has approximation order 2 and is supported in[0, 2]. In order to satisfy the highpass and lowpass property, we apply balancing technique tomatrix conjugate quadrature filters, then utilize the balanced matrix conjugate quadrature filtersfor fusion of images, and obtain expectant results. From the view of Optimum Time-Frequency Resolution (OPTFR), Jiang constructedorthogonal and symmetric multiwavelets Ψ_2, which has approximation order 2 and is supported in[0, 2]. In order to satisfy the highpass and lowpass property, we apply balancing technique tomatrix conjugate quadrature filters, then utilize the balanced matrix conjugate quadrature filtersfor fusion of images, and obtain expectant results.
作者 LIChang-xing
出处 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2005年第1期27-30,共4页 中国邮电高校学报(英文版)
基金 This work is supported by the National Natural Science Foundation of China (No.10347138) and the National Natural Science Foundation of the Education Committeeof Shaanxi province(No.03JK062).
关键词 MULTIWAVELETS OPTFR balanced multiwavelets fusion of image multiwavelets OPTFR balanced multiwavelets fusion of image
  • 相关文献

参考文献4

二级参考文献26

  • 1Mallat S G. A theory for multiresolution signal decomposi-tion: the wavelet representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989, 11 (7) : 674-693. 被引量:1
  • 2Mallat S G. A wavelet tour of signal processing[M]. San Die-go Academic Press, 1998. 被引量:1
  • 3Zhong Zhang, Rick S Blum. A categorization of multiscale-de-composition-based image fusion schemes with a performance study for a digital camera application[J]. Proceedings of the IEEE, 1999, 87(8):1315-1326. 被引量:1
  • 4Jo Yew Tham, Shen Lixin, Seng Luan Lee, et al. A general approach for analysis and application of discrete multiwavelet transforrns[J]. IEEE Trans on Signal Processing, 2000, 48(2) :457-464. 被引量:1
  • 5Strela V. Multiwavelet: theory and applications[M]. Massa-chusetts: MIT Press, 1996. 被引量:1
  • 6Chui C. K., An Introduction to Wavelets, Bostan: Academic Press, 1992. 被引量:1
  • 7Daubechies I., Orthonornal bases of compactly supported wavelets, Comm. Pure and Appl. Math., 1988, 41:909--996. 被引量:1
  • 8Franklin P., A set of continuous orthogonal functions, Math. Ann., 1928, 100: 522-529. 被引量:1
  • 9Meyer Y., Ondelettes sur l'intervalle, Rev. Mat. Iberoamericana, 1991, 7: 115-143. 被引量:1
  • 10Chui C. K., Quak E., Wavelets on a Bounded Interval, In "Numerical Methods of Approximation Theory"(Braess D. and Schumaker L. L. eds.), Basel: Birkhauser-Verlag, 1992, 53-75. 被引量:1

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部