摘要
将筒中筒结构连续化处理后,视为一根由内外筒组合而成的悬臂柱,利用连续化处理后微分方程的解作为单元位移函数,推导出了内外筒组合在一起(包括大量梁和柱)的超级元单元刚度矩阵和等效荷载矩阵;求解时,按楼层或刚度不变段划分成超级单元,利用矩阵位移法求解筒中筒结构的位移和内力;求出内外筒内力后,利用由最小余能原理推导出的外筒剪力滞后影响函数控制微分方程,结合超级单元边界条件,给出了外筒剪力滞后影响函数.该方法计算简便,又能考虑外筒的剪力滞后影响,当刚度不变时,计算精度同连续化方法,当刚度变化时,计算结果更加合理.
Super element matrix and equivalent load matrix of internal and external tube’s combination is derived from element displacement function,which is combined by differential equation’s solution regarding it as a cantilever column after dealing the tubetype with continuum technique.The displacement and internal force of tubetype are solved by displacement matrix method according to floor or rigidity section to divide it into super element. After then,shearing lag effect function is derived from controldifferential equation of shearing lag effect function,which is deduced by the minimum complementary energy principle.The computation is simple,and the method also takes account of the external tube’s shearing lag affect.When the stiffness is invariable,the result is same as the continuum technique while if the stiffness is variable,the result are more reasonable.
出处
《兰州交通大学学报》
CAS
2005年第1期115-119,共5页
Journal of Lanzhou Jiaotong University
关键词
变刚度
筒中筒结构
超级元方法
应力函数
剪力滞后
variable stiffness
tubetype structure
super element method
stress function
shearing force lag effect