期刊文献+

一类带临界Sobolev指数及有拟超临界Neumann边界条件的椭圆方程正解的多重性(英文)

Multiplicity of Positive Solutions for a Class of Elliptic Equations with Critical Sobolev Exponents
下载PDF
导出
摘要 本文讨论了Ω上如下一类带临界增长的椭圆方程在拟超临界的Neumann边界条件下正解的存在性:-Div(| u |p-2 u) =λum + up*-1,-| u |p-2 u ν=ψ(x)uq-1,x∈Ω,x∈Ω.这里Ω∈RN,(N≥3)是光滑有界区域, 1≤p < N,0< m < p-1,(N -1)pN - p= p*N-1 ≤q < p*,其中p* =NpN - p是W1,p(Ω)→Ls(Ω)的Sobolev临界指数,p*N-1 =(N -1)pN - p是W1,p(Ω)→Lt( Ω)的在(N-1)维流形上的临界指数,λ>0是一个正参数. In this paper,the existence of positive sol u tions to the following Neumann problem -Div(|u| p-2u)=λu m+u p*-1, -|u| p-2uν=ψ(x)u q-1,x∈Ω, x∈Ω.was discussed in Ω.Where ΩRN,(N≥3) is a smooth bounded domain,and 1<p<N,0<m<p-1,(N-1)pN-p=p * N-1≤q<p*,p*=NpN-p is the Sobolev critical expo nent W 1,p(Ω)→Ls(Ω) and p* N-1 is the critical exponent of the embedding W 1,p(Ω)→Lt(Ω) in the (N-1) dimension mani fold and λ>0 is a parameter.
作者 胡业新
出处 《应用数学》 CSCD 北大核心 2005年第2期286-292,共7页 Mathematica Applicata
基金 Supported by NSFC(10271077)
关键词 NEUMANN边界条件 临界SOBOLEV指数 椭圆方程 超临界 SOBOLEV临界指数 多重性 正解的存在性 临界增长 有界区域 编导 R^N 流形 Quasilinear elliptic equation Sobolev critical exponent Positive solution (PS) c sequence
  • 相关文献

参考文献9

  • 1Ray Michalek. Existence of a positive solution of a general quasilinear elliptic equation with a nonlinear boundary condition of mixed type[J]. Nonlinear Analysis, Theory, Methods and Applications, 1990,9(15) :871-882. 被引量:1
  • 2Zhang Guiyi. Shen Yiaotian. Neumann problem of quasilinear elliptic equation with critical sobolev exponent and critical nonlinearity boundary condition[J]. Acta Mathematica Sinica, 1998.4 (41) : 851 - 858. 被引量:1
  • 3Xu Jinquan. Nonlinear boundary value problem of quasilinear elliptic equations-critical sobolev exponent case[J]. Journal of Math. (PRC),1994,4(19);454-60. 被引量:1
  • 4Rabinowiz P H. Some minimax theorems and applications to nonlinear PDE[A]. Nonlinear Analysis[C].Weinberger : Academic Press, 19 7 8,61 - 117. 被引量:1
  • 5Goncalves O H, Alves C O. Existence of positive solutions for m- Laplacian equations in R^n involving critical sobolev exponents[J]. Nonlinear Analysis, Theory, Methods and Applications, 1998,32 (1) : 53 - 70. 被引量:1
  • 6Lions P L. The concentration-compactness principle in the calculus of variation[A]. The Limit Case, part1,2[C]. Rev. Mat. Iberoamericana, 1985,1 : 45 - 121,145 -201. 被引量:1
  • 7Zhu Xiping. On the existence of nontrivial solution of a quasilinear elliptic equations with critical sobolev exponent[J]. Science in china,1988,3(A) :225-237. 被引量:1
  • 8Brezis H,Lieb E H. A relation between point wise convergence functions and convergence of functions[J]. Proc. Amer. Soc., 1983,88 :486-490. 被引量:1
  • 9Michael Struwe. Variational Methods[M]. Berlin, Herdelberg. New York: Springer-Verlag, 1990. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部