摘要
针对一类线性系统中模型参数存在的不确定性,同时这种不确定性通常并不完全满足匹配条件,设计了不匹配条件下的鲁棒稳定控制律,使其具有鲁棒到达条件并在有限时间内到达滑动平面.给出全局鲁棒到达条件的证明.进而通过解一个代数Ricatti方程设计了一个鲁棒稳定的滑动平面.在存在不匹配的不确定性项的情况下,滑动模态子系统仍具有二次稳定性.数值仿真结果说明方法是有效的.
The Variable structure control laws for a class of uncertain systems (with uncertain differential coefficient of state) is designed where the uncertainty does not satisfy the matching condition. The state can reach sliding mode hyperplanes with robust reaching condition in finite time. A robust stabilization sliding mode hy-perplanes conbe designed via seeking a solution of an algebraic Riccati equation. The system in the sliding mode hyperplanes is quadratically stablizable with the mismatched uncertainty. The numerical result shows that the control system could work efficiently.
出处
《哈尔滨工业大学学报》
EI
CAS
CSCD
北大核心
2005年第4期518-521,共4页
Journal of Harbin Institute of Technology
关键词
不确定性
变结构控制
滑动平面
鲁棒性
二次稳定性
Ricatti方程
uncertain systems
variable structure control ( VSC)
sliding mode hyperplanes
robust
qua-dratically stablizable
Riccati equation