期刊文献+

深度防卫的自适应入侵检测系统 被引量:2

Defense-in-Depth Adaptive Intrusion Detection System
下载PDF
导出
摘要 为了全面检测黑客入侵和有效提高检测精度,提出了一种深度防卫的自适应入侵检测系统模型.该模型按照黑客入侵对系统影响的一般顺序,使用不同方法对网络行为、用户行为和系统行为3个层次涉及到的网络数据包、键盘输入、命令序列、审计日志、文件系统和系统调用进行异常检测,并利用信息融合技术来融合不同检测器的检测结果,从而得到合理的入侵判定.在此基础上,提出了系统安全风险评估方法,并由此制定了一种简单、高效的自适应入侵检测策略.初步实验结果表明,所提的深度防卫自适应入侵检测模型能够全面、有效地检测系统的异常行为,可以自适应地动态调整系统安全与系统性能之间的平衡,具有检测精度高、系统资源消耗小的优点. Aiming at detecting intrusions across-the-board and at improving detection accuracy, a novel model of defense-in-depth adaptive intrusion detection system (IDS) was presented. In this model, the behaviors in a computer system are monitored according to the general order of the impact of the attacks and divided into three layers including network behaviors, user behaviors and system behaviors. Various methods are then applied to process the data streams from network packages, keystrokes, audit trails, command sequences, file system and system calls obtained in the three layers for intrusion detection. The monitoring decision on intrusion is made by combining the six individual inferences based on information fusion technique. Based on the risk assessment method proposed in this paper, an efficient adaptive policy is drawn as well for IDS to reduce the expense of system resources. The model is tested and the results show that the model presented is effective to detect intrusions and to balance the system security and performance adaptively and dynamically. The model is promising as well in terms of detection accuracy, system resource requirement and implementation in practice.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第4期339-342,346,共5页 Journal of Xi'an Jiaotong University
基金 国家杰出青年科学基金资助项目(6970025) 国家自然科学基金资助项目(60243001) 国家高技术研究发展计划资助项目(2001AA140213 2003AA142060).
关键词 入侵检测 深度防卫 网络安全 信息融合 Adaptive control systems Data flow analysis Risk assessment Sensor data fusion Signal detection
  • 相关文献

参考文献7

  • 1Anderson D, Frivold T, Valdes S. Next-generation intrusion detection expert system: a summary [R]. Technical Report, SRI-CSL-95-07. Menlo Park, USA: Computer Science Laboratory, SRI International, 1995.1-52. 被引量:1
  • 2Song D, Venable P, Perrig A. User recognition by keystroke latency pattern analysis [EB/OL]. http://citeseer.nj.nec.com/song97user.html, 2003-10-05. 被引量:1
  • 3Tripwire Inc. Tripwire [EB/OL]. http://www.tripwire.org, 2003-08-11. 被引量:1
  • 4Forrest S, Hofmeyr S A, Somayaji A, et al. A sense of self for Unix processes [A]. Proceedings of the 1996 IEEE Symposium on Research in Security and Privacy [C]. Los Alamos, USA: IEEE Computer Society Press, 1996. 120-128. 被引量:1
  • 5张文修,梁怡著..不确定性推理原理[M].西安:西安交通大学出版社,1996:299.
  • 6陈秀真,郑庆华,管晓宏,林晨光.网络化系统安全态势评估的研究[J].西安交通大学学报,2004,38(4):404-408. 被引量:73
  • 7Carnegie Mellon University. CERT/CC vulnerability note field descriptions [EB/OL]. http://www.kb.cert.org/vuls/html/fieldhelp#metric, 2004-02-04. 被引量:1

二级参考文献5

  • 1[1]Tim B. Multisensor data fusion for next generation distributed intrusion detection systems[A]. 1999 IRIS National Symposium on Sensor and Data Fusion, Laurel,USA,1999. 被引量:1
  • 2[2]Tim B. Intrusion systems and multisensor data fusion: creating cyberspace situational awareness[J]. Communications of the ACM, 2000, 43(4): 99~105. 被引量:1
  • 3[3]Martin R, Chris G.Snort users manual, Snort release 2.0.0[EB/OL].http://www.snort.org/docs/SnortUsersManual.pdf,2002-07-06. 被引量:1
  • 4[4]Tim B, Roger R. Defense-in-depth revisited:qualitative risk analysis methodology for complex network-centric operations[EB/OL].http://www.silkroad.com/papers/pdf/archives/defense-in-depth-revisited-original.pdf,2002-07-23. 被引量:1
  • 5[5]Honeynet Project.Know your enemy: statistics[EB/OL].http://www.HoneyNet.org/papers/stats/, 2001-07-22. 被引量:1

共引文献72

同被引文献20

  • 1吴小强,刘晶,朱世朋,周荣喜,邱菀华.基于可信第三方的安全支付认证模型及其应用[J].计算机集成制造系统,2005,11(5):690-695. 被引量:5
  • 2李响,陈小平.一种动态不确定性环境中的持续规划系统[J].计算机学报,2005,28(7):1163-1170. 被引量:11
  • 3韩宗芬,陶智飞,杨思睿,邹德清.一种基于自治域的协同入侵检测与防御机制[J].华中科技大学学报(自然科学版),2006,34(12):53-55. 被引量:7
  • 4张永铮,方滨兴,迟悦,云晓春.用于评估网络信息系统的风险传播模型[J].软件学报,2007,18(1):137-145. 被引量:76
  • 5CARVER C,HILL J M,SURDU J R.A methodology for using intelligent agents to provide automated intrusion response[C] //Proceedings of the 2000 IEEE Workshop on Information Assurance and Security.Los Alamitos,CA,USA:IEEE Computer Society,2000:110-116. 被引量:1
  • 6RAGSDALE D,CARVER C,HUMPHRIES J,et al.Adaptation techniques for intrusion detection and intrusion response system[C] //The IEEE International Conf on Systems,Man,and Cybernetics.Los Alamitos,CA,USA:IEEE Computer Society,2000:2344-2349. 被引量:1
  • 7MUSMAN S,FLESHER P.System of security managers' adaptive response tool[C] // Proceedings of DARPA Information Survivalability Conference and Exposition.Los Alamitos,CA,USA:IEEE Computer Society,2000:56-68. 被引量:1
  • 8FOO Bingrui,WU Yusung,MAO Yuchun,et al.ADEPTS:adaptive intrusion response using attack graphs in an E-commerce environment[C] //Proceedings of the 2005 International Conference on Dependable Systems and Networks.Los Alamitos,CA,USA:IEEE Computer Society,2005:508-517. 被引量:1
  • 9WU Yusung,FOO Bingrui,MAO Yuchun,et al.Automated adaptive intrusion containment in systems of interacting services[J].Computer Networks,2007,5(51):1334-1360. 被引量:1
  • 10LYE K W,WING M J.Game strategies in network security[J].International Journal of Information Security,2005,4(1/2):71-86. 被引量:1

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部