摘要
A 20 vol. percent SiC_p/Al composite was fabricated by squeeze casting, ofwhich a new process for fabricating the preform was used by blending Al powder and SiC particulateswith average diameters of 10 and 3.5 mu m, respectively. The microstructure of the as-cast and thehot-rolled composite was investigated by using TEM, EDS, and SEM, and their tensile properties weremeasured at room temperature. The results show that the ultimate tensile strength and ultimateelongation of the hot-rolled composite are 80 percent and 140 percent higher than those of theas-cast one. The TEM observation result indicates that there are high density of dislocations anddislocation tangles in the hot-rolled composite. Al_2O_3 layers in the composite resulting from thesurface oxidation of the aluminum powders were damaged to spherical particles during hot rolling.All the results indicate that hot-rolling can improve the mechanical properties of the compositeand, therefore, engineering components of the 20 vol. percent SiC_p/Al composite can be produced bysqueeze casting followed by hot-rolling.
A 20 vol. percent SiC_p/Al composite was fabricated by squeeze casting, ofwhich a new process for fabricating the preform was used by blending Al powder and SiC particulateswith average diameters of 10 and 3.5 mu m, respectively. The microstructure of the as-cast and thehot-rolled composite was investigated by using TEM, EDS, and SEM, and their tensile properties weremeasured at room temperature. The results show that the ultimate tensile strength and ultimateelongation of the hot-rolled composite are 80 percent and 140 percent higher than those of theas-cast one. The TEM observation result indicates that there are high density of dislocations anddislocation tangles in the hot-rolled composite. Al_2O_3 layers in the composite resulting from thesurface oxidation of the aluminum powders were damaged to spherical particles during hot rolling.All the results indicate that hot-rolling can improve the mechanical properties of the compositeand, therefore, engineering components of the 20 vol. percent SiC_p/Al composite can be produced bysqueeze casting followed by hot-rolling.
基金
ThisworkisfinanciallysupportedbytheNationalNaturalScienceFoundationofChina(No.50071018)theNationalKeyFoundationofChina(No.G2000067206-3).