期刊文献+

含圆形夹杂的无穷大平面电致伸缩材料的应力分析

STRESS ANALYSIS OF ELECTROSTRICTIVE MATERIAL WITH A CIRCULAR INHOMOGENEITY IN AN INFINITE PLATE
下载PDF
导出
摘要 利用电致伸缩基本方程 ,采用伪总应力和复变函数解法 ,并利用级数展开方法得出了含圆形夹杂的无限大电致伸缩材料应力场 ,在一般情况下 ,与Eshelby夹杂理论不同 ,在电致伸缩材料圆形夹杂内部应力场是非均匀的 . The stress field in electrostrictive material with a circular inhomogeneity is obtained by applying the basic equations of electrostriction with the pseudo total stress and complex variable solution. In general case, the stress field is not uniform in the inhomogeneity which is different to the solution for elastic materials derived by Eshelby.
作者 蒋泉 匡震邦
出处 《固体力学学报》 CAS CSCD 北大核心 2005年第1期55-61,共7页 Chinese Journal of Solid Mechanics
基金 国家自然科学基金 (10 13 2 0 10 10 472 0 69)资助 .
关键词 无穷大 级数展开 基本方程 圆形 复变函数解法 无限大 夹杂 伸缩 应力场 用电 electrostriction, inhomogeneity, series solution
  • 相关文献

参考文献13

  • 1匡震邦编著..非线性连续介质力学[M].上海:上海交通大学出版社,2002:370.
  • 2Stratton J A. Electromagnetic Theory. NewYork: McGraw-Hill,1941. 被引量:1
  • 3Landau L D, Lifshitz E M. Electodynamics of Continous Media.Oxford: Pergamon Press, 1960. 被引量:1
  • 4Knops R J. Two-dimensional electrostriction. Qt J Mech Appl Math, 1963, 16:377~388. 被引量:1
  • 5Muskhelisvili N I. Some basic problems in the mathematical theory of elasticity. Netherlands: Noordhoff, 1954. 被引量:1
  • 6Smith T E, Warren W E. Some problems in two-dimensional electrostriction. J Math Phys, 45, 45 ~ 51 (corrigenda), 1966,1968, 47:109 ~ 110. 被引量:1
  • 7McMeeking R M. On mechanical stresses at cracks in dielectrics with application to dielectric breakdown. Journal of Applied Physics, 1987, 62: 3116~3122. 被引量:1
  • 8McMeeking R M. Electrostrictive stresses near crack-like flaws.Journal of Applied Mathematics and Physics(ZAMP), 1989,40:615 ~ 627. 被引量:1
  • 9蒋泉,匡震邦.含椭圆缺陷电致伸缩材料的应力分析[J].中国科学(G辑),2003,33(3):265-271. 被引量:1
  • 10Kuang Z B, Jiang Q. Stress analysis in two dimensional electrostrictive material under general loading. IUTAM Symposium for Mechanics and Reliability of Actuating Materials, Beijing,2004. 被引量:1

二级参考文献10

  • 1Stratton J A. Electromagnetic Theory. New York: McGraw-Hill Book Co, 1941, 106-123. 被引量:1
  • 2Landau L D, Lifshitz E M. Electodynamics of Continous Media. Oxford: Pergamon Press, 1960, 92-105. 被引量:1
  • 3Pao Y H. Electromagnetic force in deformable continua. Nemat-Nasser Mechanics Today, 1978, 4:9-39. 被引量:1
  • 4Knops R J. Two-dimensional electrostriction. Qt J Mech Appl Math, 1963, 16:377-388. 被引量:1
  • 5Smith T E, Warren W E. Some problems in two-dimensional electrostriction. J Math Phys, 1966, 45:45-51. 被引量:1
  • 6McMeeking R M. On mechanical stresses at cracks in dielectrics with application to dielectric breakdown. Journal of Applied Physics, 1987, 62:3116-3122. 被引量:1
  • 7McMeeking R M. Electrostrictive stresses near crack-like flaws. Journal of Applied Mathematics and Physics (ZAMP), 1989,40:615-627. 被引量:1
  • 8Shkel Yuri M, Klingenberg Daniel J. Material parameters for electrostriction. J Appl Phys, 1996. 80(8): 4566-4571. 被引量:1
  • 9Yang W, Suo Z. Cracking in ceramic actuators caused by electrostriction. Journal of the Mechanics and Physics of Solids,1994, 42(4): 649-663. 被引量:1
  • 10Myskhelisvili N i. Some Basic Problem in the Mathematical Theory of Elasticity. Nordhoff: The Netherlands, 1954. 64-147. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部