摘要
本文给出了数值求解一类偏积分微分方程的二阶全离散差分格式.采用了Crank- Nicolson格式;积分项的离散利用了Lubich的二阶卷积积分公式;给出了稳定性的证明,误差估计及收敛性的结果.
In this paper,the second order fully discrete difference method for a partial integro-differential equation is considered.Crank-Nicolson scheme is empolied;The integral term is treated by means of the second order covolution quadrature suggested by Lubich;The stability,error estimate is gived.
出处
《数学理论与应用》
2005年第1期43-47,共5页
Mathematical Theory and Applications
基金
国家自然科学基金资助 (10 2 710 4 6 )