期刊文献+

柔性神经网络及其在开关磁阻电机建模与仿真中的应用 被引量:4

Flexible neural network and its application to modeling and simulation of switch reluctance motor
下载PDF
导出
摘要 作为一种新型的神经网络,创建了具有高度柔性特性的网络结构。给出了柔性神经网络(FNN)的基本原理,并将其应用于开关磁阻电机(SRM)的建模与仿真,展示了SRM新型建模方法的主要优点。FNN在实现系统功能的同时,需要较少的神经元和迭代循环,大大降低了网络的复杂性,加速了网络的学习与实时计算速度。 A highly flexible network structure is built as a new neural network. The basic principle is given for the flexible neural network (FNN), which is applied to the modeling and simulation of switch reluctance motor (SRM). Main advantages of the new modeling method for SRM are illustrated. Less nerve cells and iterative cycles are demanded for realization of system functions by FNN, so that the network is greatly simplified and that study of network and real-time calculation speed is increased.
出处 《机车电传动》 2005年第2期23-26,39,共5页 Electric Drive for Locomotives
基金 教育部重点项目(2004104051) 北京交通大学"十五"专项科技基金(2003SM013)资助
关键词 柔性神经网络 开关磁阻电机 建模方法 仿真技术 flexible neural network switch reluctance motor modelling simulation
  • 相关文献

参考文献4

  • 1B K Bose,T J E Miller,P M Szczesny,W H Bicknell. Microcomputer control of switched reluctance motor [ J ]. IEEE Trans.Ind. Applicat., 1986, IA-22:708-715. 被引量:1
  • 2H Cailleux, B Le Pioufle, B Multon. Comparison of control strategies to minimize the torque ripple of a switched reluctance machine [ J ]. Elect. Mach. Power Syst.,1997,25(10):1103-1118. 被引量:1
  • 3Myeonghee Kim, Matsunaga N, Kawaji S. Estimation of cutting torque in drilling system based on flexible neural network[ J ]. Proceedings of the International Joint Conference on Neural Networks,2003, 1 (20-24): 642-647. 被引量:1
  • 4Yazdanpanah M J, Semsar E, Lucas C. Minimization of actuator repositioning in delayed processes using flexible neural networks[ J ]. Proceedings of 2003 IEEE Conference on Control Applications, 2003, 1 (23-25): 331-335. 被引量:1

同被引文献21

  • 1夏长亮,陈自然,李斌.开关磁阻电机神经网络自适应PWM转速控制[J].中国电机工程学报,2006,26(13):141-145. 被引量:14
  • 2伍峰,葛宝明.改进型柔性神经网络及在开关磁阻电机磁化曲线建模中的应用[J].机车电传动,2006(4):27-30. 被引量:2
  • 3Teshnehlab M, Watanahe K. Intelligent control based on flexible neural networks[M ]. London : Kluwer Academic Publishers, 1999. 被引量:1
  • 4Bavafa-Toosi Y, Ohmori H. On flexible neural networks: snme systemtheoretic properties and a new class [ C ]. Japan: Proceedings of 44th IEEE Conference on Decision and Control,2005. 被引量:1
  • 5Hagan M T, Demuth H, Beale M H. Neural network design [ M ]. Beijing: China Machine Press,2002. 被引量:1
  • 6Trefethen L N, Bau D. Numerical linear algebra[ M ]. Beijing: Posts and Telecom Press, 2006. 被引量:1
  • 7[2]Myeonghee Kim,Matsunaga N,Kawaji S.Estimation of cutting torque in drilling system based on flexible neural network[J].Proceedings of the International Joint Conference on Neural Networks,2003 1(7):642-647. 被引量:1
  • 8[3]Yazdanpanah M J,Semsar E,Lucas C.Minimization of actuator repositioning in delayed processes using flexible neural networks[J].Proceedings of 2003 IEEE Conference on Control Applications,2003 1 (7):331-335. 被引量:1
  • 9[4]Ilic-Spong' M,M arino R,Peresada S M,et al.Feedback linearizing control of switched reluctance motors[J].IEEE Trans.Automatic Control,1987,32(5):371-379. 被引量:1
  • 10[5]Sahoo N C,Xu J X,Panda S K.Low torque ripple control of switched reluctance motors using iterative learning[J].IEEE Trans Energy Conversion,2001,16 (4):318-326. 被引量:1

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部