期刊文献+

聚乙烯基环己烷-聚乙烯-聚乙烯基环己烷三嵌段共聚物溶液的受限结晶研究 被引量:3

Confined Crystallization of Poly(vinylcyclohexane)-b-poly(ethylene)-b-poly(vinylcyclohexane) Triblock Copolymer in Solution
下载PDF
导出
摘要 The crystallization of poly(vinylcyclohexane)-b-poly(ethylene)-b-poly(vinylcyclohexane)(PVCH-PE-PVCH) triblock copolymer/chloroform solution was investigated. The solvent of the solution system was evaporated at various temperatures. It was found that the crystallinity was decreased with increasing the solvent evaporating temperature. This indicated that the crystallinity depends on the crystallization time because the higher the evaporating temperature, the faster the speed of the solvent evaporating is. However, the melting temperature(T_m) of the block copolymer was found to depend on the competition between the crystallization and the microphase separation. When the evaporating temperature is lower(below 333 K), i.e. the speed of the solvent-evaporating is slow, the PE block crystallized freely and the T_m increased with increasing the solvent evaporating temperature, implying that the T_m only depends on the crystalline temperature. On the other hand, with the increasing temperature up to above 343 K for solvent evaporating, two melting peaks at 356 and 377 K were observed for the crystallization of PVCH-PE-PVCH in the solution. It resulted in that the crystallization and the microphase separation of the block copolymer occurred simultaneously. And the confined and unconfined crystallization coexisted for the samples. The competition of the crystallization and the microphase separation can be controlled through changing the solvent evaporating speed. The crystallization of poly(vinylcyclohexane)-b-poly(ethylene)-b-poly(vinylcyclohexane)(PVCH-PE-PVCH) triblock copolymer/chloroform solution was investigated. The solvent of the solution system was evaporated at various temperatures. It was found that the crystallinity was decreased with increasing the solvent evaporating temperature. This indicated that the crystallinity depends on the crystallization time because the higher the evaporating temperature, the faster the speed of the solvent evaporating is. However, the melting temperature(T_m) of the block copolymer was found to depend on the competition between the crystallization and the microphase separation. When the evaporating temperature is lower(below 333 K), i.e. the speed of the solvent-evaporating is slow, the PE block crystallized freely and the T_m increased with increasing the solvent evaporating temperature, implying that the T_m only depends on the crystalline temperature. On the other hand, with the increasing temperature up to above 343 K for solvent evaporating, two melting peaks at 356 and 377 K were observed for the crystallization of PVCH-PE-PVCH in the solution. It resulted in that the crystallization and the microphase separation of the block copolymer occurred simultaneously. And the confined and unconfined crystallization coexisted for the samples. The competition of the crystallization and the microphase separation can be controlled through changing the solvent evaporating speed.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2005年第3期583-585,共3页 Chemical Journal of Chinese Universities
基金 国家自然科学基金 (批准号 :2 0 1740 2 2 ) 重大研究计划"理论物理学及其交叉科学若干前沿问题"子课题 (批准号 :90 10 3 0 3 5 ) 国家自然科学重点基金 (批准号 :10 3 3 40 2 0 )资助 .
关键词 聚乙烯基环己烷-聚乙烯-聚乙烯基环己烷 微相分离 受限结晶 Poly(vinylcyclohexane)-b-poly(ethylene)-b-poly(vinylcyclohexane) Microphase separation Confined crystallization
  • 引文网络
  • 相关文献

参考文献11

  • 1Frank S. Bates. Annu. Rev. Phys. Chem.[J], 1990, 41: 525-557. 被引量:1
  • 2Nikos Hadjichristidis, Stergios Pispas, George Floudas. Block Copolymers: Synthetic Strategies, Physical Properties and Applications[M], New Jersey: John Wiley & Sons, Inc., 2003. 被引量:1
  • 3Hamley I. W. Adv. Polym. Sci.[J], 1999, 148: 113-137. 被引量:1
  • 4Weimann P. A., Hajduk D. A., Chu C. et al. J. Polym. Sci.: Polym. Phys.[J], 1999, 37: 2053-2068. 被引量:1
  • 5Zhu L., Cheng S. Z. D., Calhoun B. H. et al. J. Am. Chem. Soc.[J], 2000, 122: 5957-5967. 被引量:1
  • 6Rangarajan P., Register R., Adamson D. H. et al. Macromolecules[J], 1995, 28: 1422-1428. 被引量:1
  • 7Hamley I. W., Fairclough J. P. A., Ryan A. J. et al. Polymer[J], 1996, 37: 4425-4429. 被引量:1
  • 8Yueh-Lin Loo, Rechard A. Register, Anthony J. Ryan et al. Macromolecules[J], 2001, 34: 8968-8977. 被引量:1
  • 9Yueh-Lin Loo, Rechard A. Register, Anthony J. Ryan et al. Macromolecules[J], 2002, 35: 2365-2374. 被引量:1
  • 10Chen H. L., Hsiao S. C., Yamauchi K. et al. Macromolecules[J], 2001, 34: 671-674. 被引量:1

同被引文献34

  • 1于佩潜,谢续明,王涛,Frank S.Bates.PVCH-PE-PVCH三嵌段共聚物在超临界CO_2中的熔融再结晶行为[J].高等学校化学学报,2006,27(7):1389-1391. 被引量:3
  • 2杨伟,单桂芳,唐雪刚,周桥成,谢邦互,杨鸣波.LLDPE吹塑薄膜的结构与性能[J].高分子材料科学与工程,2006,22(4):114-117. 被引量:15
  • 3曾芳勇,赵建青,杨平身,徐志达.线型低密度聚乙烯薄膜透光性的研究[J].石油化工,2006,35(8):770-773. 被引量:13
  • 4Gehlsen M D, Bates F S. Heterogeneous catalytic hydrogenation of polystyrene: Thermodynamics of poly(vinylcyclohexane)-containing diblock copolymers[J]. Macromolecules, 1993, 26(16): 4122-4127. 被引量:1
  • 5Weimann P A, Hajduk D A, Chu C, et al. Crystllization of tethered polyethylene in confined geometries[J]. Journal of Polymer Science Part 13: Polymer Physics, 1999, 37(16) :2053-2068. 被引量:1
  • 6Gehlsen M D, Bates F S. Conformational asymmetry in poly(vinylcyclohexane) containing diblock copolymers [J]. Macromolecule, 1994, 27(13): 3611-3618. 被引量:1
  • 7Loo Y L. Controlled polymer crystallization through block copolymer self-assembly [D]. New Jersey: Princeton University, 2001. 被引量:1
  • 8Hamley I W, Fairelough J P A, Ryan A J, et al. Crystallization of nanoscale-eonfined dibloek eopolymer ehains[J]. Polymer, 1996, 37(19):4425-4429. 被引量:1
  • 9Quiram D J, Register R A, Marchand G R. Crystallization of asymmetric diblock copolymers from microphase-separated melts [J].Macromolecules, 1997, 30(16): 4551-4558. 被引量:1
  • 10Loo Y L, Register R A, Ryan A J, et al. Polymer crystallization confined in one, two, or three ctimensions[J]. Macromolecules, 2001, 34(26): 8968-8977. 被引量:1

引证文献3

二级引证文献4

;
使用帮助 返回顶部