摘要
神经网络具有自学习、自适应能力,用于控制时可不依赖控制对象的数学模型。感应电动机矢量控制技术是通过坐标变换,实现对定子电流的励磁分量与转矩分量的解耦控制。为实现对交流电机快速和精确控制,本文基于单神经元设计出用于感应电动机矢量控制的自适应磁链和转速控制器,利用神经元的自学习功能在线调节连接权重,实现自适应控制。并将此设计应用于由数字信号处理器(DSP)实现的交流电机矢量控制系统中,实验表明此方法设计的控制器结构简单,易于数字化实现,控制系统动态性能良好。
The neural network with self-study and self-adaptive capability can control a system without modeling the plant. The technique of induction motor vector control is a way to realize the decoupling control of stator current excitation and torque variable through coordinates transform. For the sake of fast and accurate control of induction motor, the design of the adaptive flux controller and speed controller are based on neuron, and is applied to vector control with digital signal processor. The adaptive control is realized by using the capability of neuron self-study adjusting the weight online. The result shows that the designed scheme is simply and easy to digital achieving, prefect in dynamic performance.
出处
《电工技术学报》
EI
CSCD
北大核心
2005年第3期85-89,共5页
Transactions of China Electrotechnical Society
基金
江苏省应用基础项目(BJ99014)。
关键词
矢量控制
单神经元
自适应控制
Vector control, single neuron, adaptive control