期刊文献+

用HCM聚类和遗传算法实现多级模糊神经网络 被引量:1

Development of Multi-fuzzy Neural Networks by the Means of HCM Clustering and GAs
下载PDF
导出
摘要 模糊集理论适用于一些实验数据中不确定性和模糊性的建模问题,而模糊推理系统拥有模糊IF-THEN格式的结构化知识表示,但缺少适应性。神经网络本身具有对外部很强的适应性和从过去数据中学习的机制,但基于线性推理的模糊神经网络(FNN)模型作为模糊推理方法不能得到存在于参数间的最终关系,也不能影响接着发生的模糊集合。因此,我们提出了一个多级模糊神经网络(Multi-FNN),使用硬C均值聚类和进化模糊颗粒,利用处理为近似推理的一个线性推理,获得信息微粒和模糊集之间的关系。 Fuzzy sets theory has been introduced to model uncertain and/or ambiguous characteristics in any experi- mental data. Fuzzy inference system is expressed by the form 'if-then', but it lacks of fitness. While the essential ad- vantage of neural networks lies in their adaptive nature and mechanisms of learning from historical data. The draw- back of fuzzy neural networks(FNNs) model based on linear inference treated as fuzzy inference method is that even- tual relationships existing between the variables cannot be captured in this manner and reflected in the form of the en- suing fuzzy sets. To deal with shortcoming, we propose an idea of Multi-FNNs. They use a Hard C-Means (HCM) clustering algorithm and evolutionary fuzzy granulation and obtain relationship between information granulation and fuzzy sets by the linear inference method treated as approximation inference. The results demonstrated the effective- ness of the proposed model
出处 《计算机科学》 CSCD 北大核心 2005年第3期229-232,共4页 Computer Science
关键词 HCM聚类 模糊集理论 遗传算法 多级模糊神经网络 模糊规则 Multi-Fuzzy-Neural Networks Fuzzy rule Hard C-Means clustering Genetic algorith
  • 相关文献

参考文献7

  • 1刘保踮.随机规划与模糊规划[M].北京:清华大学出版社,1998.. 被引量:2
  • 2张智星.神经-模糊与软计算[M].西安:西安交通大学出版社,2000.. 被引量:2
  • 3Dubois D,Prade H. Fuzzy sets and systems: theory and applications. New York: Academic press, 1990 被引量:1
  • 4Bezdek J C. Weighted fuzzy pattern matching. Fuzzy Sets and Systems, 1988,28: 313-331 被引量:1
  • 5Oh Sung-Kwun, et al. Rule-based multi-FNN identification with the aid of evolutionary fuzzy granulation. Knowledge-Based Systems 17,2002 被引量:1
  • 6Goldberg D E. Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading, MA, 1989 被引量:1
  • 7Box,Jenkins. Time Series Analysis ,Forcasting and Control,Holden Day,SanFrancisco,CA, 1976. 532-533 被引量:1

共引文献1

同被引文献9

  • 1赵海军,崔梦天,李明东.数据驱动的频域回波抵消算法[J].通信学报,2006,27(6):134-140. 被引量:3
  • 2BIRKETT A N, GOUBRANR A. Acoustic echo cancellationusing NLMS-neural network structures[A]. Proc IEEE Int Conf Acoust., Speech Signal Proc[C]. Maryland USA, 1995. 3035-3038. 被引量:1
  • 3CHANG P, LIN C, YEH B. Inverse filtering of a loudspeaker and room acoustics using time-delay neural network[J]. Acoustical Soc. of America, 1994, 95(6): 3400-3408. 被引量:1
  • 4NGIA L S H, SJOBERG J. Nonlinear acoustic echo cancellation using a Hammerstein model[A]. Proc IEEE Int Conf Acoust,, Speech Signal Proc[C]. UK, 2004. 1229-1232. 被引量:1
  • 5NGIA L S H, SJOBERG J, VIBERG M. Adaptive neural netsfilter using a recursive levenberg-marquardt search direction[A]. Proc Asilomar Conf Signals, Systems, Computers[C]. FLJ.998, 697-701. 被引量:1
  • 6ROSSI M. Acoustics and Electroacoustics[M]. Artech House, Inc, Norwood, MA, 1988. 被引量:1
  • 7STENGER A, TRAUTMANN L, RABENSTEIN R. Nonlinear acoustic echo cancellation with 2nd order adaptive volterra filters[A]. Proc IEEE Int Conf Acoust, Speech Signal Proc[C]. Washington, USA, 1999. 877-880. 被引量:1
  • 8罗发龙,李衍达.神经网络信号处理[M].北京:电子工业出版社,2004. 被引量:1
  • 9NARENDRA K S, GALLMAN P G. An iterative methodfor identification of nonlinear systems using a Hammersteinmodel[J]. IEEE Trans. Automatic Control, 1996, 11(7): 546-550. 被引量:1

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部