摘要
混沌系统是非线性科学的新研究领域。由于其复杂性和无规律性,混沌系统的数学模型一直难于建立,利用模糊逻辑系统的插值机理将关于被控对象的模糊推理规则库转换为一类变系数非线性微分方程,从而得到连续混沌系统的数学模型,提出了控制系统中混沌被控对象的建模问题的一种方案。对Rossler系统和lorenz系统的仿真试验表明这一建模方法有较高的逼近度。
Chaotic system is the new research field of nonlinear science. Because of the complexity and irregularity, there is great difficulty in the mathematic model of the chaotic system. In this paper, a method of fuzzy logical system is used so that we can transfer the fuzzy inference rule into a type of variable coefficient nonlinear ordinary differential equation. Consequently we can get the model of the continuous chaotic system. Simulation results of the Lorenz system and the Rossler system show that such an approach is effective with a high precision.
出处
《东华大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第1期6-10,共5页
Journal of Donghua University(Natural Science)
关键词
混沌系统
模糊建模
变系数非线性微分方程
chaotic system, fuzzy modelling system, variable coefficient nonlinear ordinary differential equation