期刊文献+

移动机器人Markov定位算法的研究——方向传感器建模新方法 被引量:3

Study on Markov localization algorithm for mobile robots: New modeling method for orientation sensor
下载PDF
导出
摘要 为了改善移动机器人Markov定位算法中方向传感器模型的性能,提出基于高斯函数的新概率模型.该模型考虑了方向角周期性问题,对相位进行了转换,利用高斯函数对方向传感器进行了概率建模.将此模型放入Markov算法,与其他传感器组成观测模型,并进行对称环境中的单次定位仿真和复杂环境中的连续定位仿真.仿真结果表明,这种概率模型计算量小,收敛速度快,在大量测量噪声存在下工作稳定. To improve the performance of orientation sensor model in Markov localization algorithm for mobile robots, a new probabilistic model based on Gauss distribution was proposed. Due to the periodical characteristic of orientation angle, the model changed the orientation angle and modeled the sensor by Gauss distribution. Utilizing Markov algorithm based on the proposed sensor model, localization simulations for symmetrical environment and unstructured environment were carried out. The simulation results prove that compared with the existing models, Markov algorithm with this new model is characterized by rapid convergence, low computation cost and good robustness under strong sensor noise.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第3期339-341,353,共4页 Journal of Zhejiang University:Engineering Science
关键词 移动机器人 Markov定位算法 传感器建模 Algorithms Computer simulation Convergence of numerical methods Markov processes Mathematical models Position measurement State estimation
  • 相关文献

参考文献6

  • 1THRUN S, FOX D, BURGARD W, et al. Robust monte carlo localization for mobile robots[J]. Artificial Intelligence, 2001,128:99-141. 被引量:1
  • 2FOX D, BURGARD W, THRUN S. Active markov localization for mobile robots[J]. Robotics and Autonomous Systems,1998,25:195 - 207. 被引量:1
  • 3WOLFRAM Burgard, ANDRESS Derr, DIETER Fox,et al. Integrating global position estimation and position tracking for mobile robots: The dynamic Markov localization approach[A]. Victoria B C ed. Proceedings of the1998 IEEE/RSJ International Conference on Intelligent Robots and Systems [C]. Canada: IEEE, 1998:730 - 735. 被引量:1
  • 4WU Q, BELL D A, CHEN Z, et al. Rough computational methods on reducing cost of computation in markov localization for mobile robots[A]. Proceedings of the 4th World Congress on Intelligence Control and Automation[C]. Shanghai:[s. n. ] ,2002:1226 - 1230. 被引量:1
  • 5吴庆祥,Bell David.可移动机器人的马尔可夫自定位算法研究[J].自动化学报,2003,29(1):154-160. 被引量:15
  • 6刘刚,柯映林.纸基蜂窝零件夹持方法研究[J].浙江大学学报(工学版),2004,38(4):501-504. 被引量:13

二级参考文献11

  • 1柯映林 刘刚.蜂窝类柔性结构材料的加工方法[P].中国: 01135679.0.2001-10-18. 被引量:3
  • 2周祖威.工程力学[M].天津:天津大学出版社,1998.. 被引量:3
  • 3Borenstein J, Everett B, Feng L. Navigating Mobile Robots: Systems and Techniques. Natick: A K Peters Press, 1996.67~96 被引量:1
  • 4Cox I J, Wilfong GT. Autonomous Robot Vehicles. New York: Springer-Verlag, 1990. 25~31 被引量:1
  • 5Feng L, Borenstein J, Everett H R. "Where am I?" sensors and methods for autonomous mobile robot positioning. In: Technical Report UM-MEAM-94-12, USA: University of Michigan, 1994.1~55 被引量:1
  • 6Thrun S, Buecken A, Burgard W et al. Map learning and high-speed navigation in RHINO. In: AI-based Mobile Robots: Case Studies of Successful Robot Systems, Kortenkamp D, Bonasso R P, Murphy R (eds.), USA: MIT Press, 1998.21~49 被引量:1
  • 7Ddieter Fox, Wolfram Burgard, Sebastian Thrun. Markov Localization For Mobile Robots In Dynamic Environments. Journal of Artificial Intelligence Research, 1999, 11:391~427 被引量:1
  • 8Wu Qing-Xiang, Bell David. Related value set algorithm for robot to distinguish image. In: Proceedings of the 3rd World Congress on Intelligent Control and Automation, Heifei: IEEE Press, 2000, 2:1546~1550 被引量:1
  • 9梅德茂.金属蜂窝芯的数控加工技术[J].西飞科技,1997(2):38-40. 被引量:12
  • 10王玉瑛,吴荣煌.蜂窝材料及孔格结构技术的发展[J].航空材料学报,2000,20(3):172-177. 被引量:32

共引文献26

同被引文献10

引证文献3

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部