期刊文献+

航空遥感数据的贝叶斯网络分类 被引量:3

THE APPLICATION OF THE BAYESIAN NETWORK METHOD TO AIRBORNE DATA CLASSIFICATION
下载PDF
导出
摘要 介绍了利用贝叶斯网络对航空遥感数据进行分类的算法和过程,认为贝叶斯网络具有以下优点:充分利用和综合了先验知识与样本信息;采用有向无环图(DAG)的方式描述了多特征数据间的相互关系;给出了联合概率表,并通过联合概率表给出了每个像元属于不同类别的概率。研究结果表明,贝叶斯网络可以为遥感数据分类提供一种新方法。 In this paper, the technical procedures and data analysis in using Bayesian network to process airborne data are described. The result shows that the Bayesian network method has three advantages. First, both the prior probability and features are used to establish the probability estimation weighing relations shown in associated probability chart; Second, the linkage of the directed acyclic graph (DAG) and classes can clearly show the relations between independence vectors (bands) and classes; Third, according to the contribution degree of three inputted bands quantitatively shown in associated probabilities for each class, the prior probability can be revised. The study results suggest that Bayesian network is likely to become a new practical method for remote sensing data processing.
出处 《国土资源遥感》 CSCD 2005年第1期34-36,65,i001,共5页 Remote Sensing for Land & Resources
基金 国家攻关项目(2002BA904807-2) 国家863项目(2003AA135080-2)。
关键词 航空遥感数据 贝叶斯网络 分类 Airborne Data Bayesian network Classification
  • 相关文献

参考文献8

  • 1史忠植著..知识发现[M].北京:清华大学出版社,2002:402.
  • 2周颜军,王双成,王辉.基于贝叶斯网络的分类器研究[J].东北师大学报(自然科学版),2003,35(2):21-27. 被引量:54
  • 3HASI Bagan, MA Jianwen, LI Qiqing, et al.The Self-Organizing Feature Map Neural Networks Classification of the ASTER Data Based on Wavelet Fusion[J].China Science(D),2003,33(9):896-902. 被引量:1
  • 4Jianwen Ma, Huadong Guo, Changlin Wang, et al.Extraction of polymetallic mineralization in formation from multispetral Thematic Mapper data uaing the Gram-Schmidt orthogonal projection (GSOP) method[J].INT.J.Remote Sensing, 2001,22(17):3323-3337. 被引量:1
  • 5Cheng J, Greiner R, Kelly J, et al.Learning Bayesian Networks from Data: an Information-Theory Based Approach[J].The Artificial Intelligence Journal, 2002, 137(1):43-90. 被引量:1
  • 6Keinosuke Fukunaga, Thomas F Krile.Calculation of Bayes recognition error for two multivariate Gaussian distributions[J].IEEE Transactions on computers, 1969,18:220-229. 被引量:1
  • 7Fayyad U M, Irani K B.Multi-interval discretization of continuous-valued attributes for classification learning[A].In Proceedings of the 13th International Joint Conference on Artificial Intelligence[C].pages San Mateo, CA, Morgan Kaufmann,1993,1022-1027. 被引量:1
  • 8包振强,王宁生,李斌.专家知识库粗集建模中基于熵的数据离散化[J].数学的实践与认识,2003,33(8):60-65. 被引量:4

二级参考文献16

  • 1David Maxwell. Learning equivalence classes of Bayesian - network structures[ J ]. Machine Learning, 2002 (2) :445 - 498. 被引量:1
  • 2Nir Friedman. Bayesian network classifiers[ J ]. Machine Learming, 1997,29:131-163. 被引量:1
  • 3Marco Ramcni. Robust Bayes clasifiers[J]. Artificial Intelligence,2001,125(1,2) :209- 226. 被引量:1
  • 4David Heckerman. Learning Bayesian networks: the combination of knowledge and statistical data[J ]. Machine Learning, 1995,20:197- 243. 被引量:1
  • 5Cheng Jie. Learning Bayesian networks from data: an information - theory based approach[J]. Artificial Intelligence,2002,137(1,2) :43-90. 被引量:1
  • 6Wong M L. Using evolutionary programming and mininum description length prindple for data mining of Bayesian networks[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21 ( 2 ) : 174-178. 被引量:1
  • 7Pawlak Z. Rough set[J]. Int Journal of Computer and Information Science, 1982, 11 (5): 341-336. 被引量:1
  • 8Jiawei Han, Micheline Kamber. Data Mining: Concepts and Techniques[M]. Morgan Kaufmann Publishers,2001, 1-143. 被引量:1
  • 9Qinlan J R. Programs for Machine Learning[M], San Mateo Morgan Kaufmann Publishers, 1993. 170-247. 被引量:1
  • 10Pawlak Z, Rough Set. Theoretical Aspects of Reasoning about Data[M]. London,, Kluwer Academic Publishers,1991. 1-51. 被引量:1

共引文献55

同被引文献16

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部