期刊文献+

进给机构磁悬浮系统的解耦控制分析 被引量:1

Decoupling control of a maglev feeding mechanism
下载PDF
导出
摘要 进给机构的磁悬浮系统由于结构的特点在进给运动中存在着水平y方向及垂直z方向的磁力和位移耦合现象.为此,分析推导了该磁悬浮系统的动力学方程,建立了相应的磁悬浮控制系统的状态方程.理论分析计算及仿真结果表明:通过采用状态反馈结合输入变换,可以使原来包含着变量间耦合的复杂控制系统实现解耦控制,简化了磁悬浮系统的控制过程,有利于提高进给机构运动的平稳性和定位精度. There are magnetic force coupling and displacement coupling on both horizontal y-axes and vertical z-axes in a magnetic levitation (maglev) system when the feeding mechanism moves. Dynamics analysis of the maglev system is run. A correlative dynamics equation and a state equation of control system are established. The equations indicate that the control system is a coupling system. After theoretical analyzing and simulated experiment, the result shows that the complicated coupling control system can be transformed to an easy decoupling control system after applying state feedback and input transformation. This will predigest the control process and be useful to improve the stability and precession accuracy to the feeding mechanism.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2005年第3期325-328,共4页 Journal of Harbin Institute of Technology
基金 吉林省自然科学基金资助项目(20020621) 中国科学院研究生科学与社会实践创新研究专项资助项目
关键词 磁悬浮 进给机构 耦合 状态反馈 解耦控制 Computer simulation Equations of motion Feeding Magnetic couplings Partial differential equations State feedback Transfer functions
  • 相关文献

参考文献5

二级参考文献5

  • 1杨明楚.计算机硬盘磁头/磁盘界面纳米摩擦学性能研究:博士学位论文[M].北京:清华大学,2001.. 被引量:1
  • 2雒建斌 杨明楚.计算机磁记录技术的发展趋势与问题.新世纪材料与摩擦学研讨会[M].洛阳,2001.. 被引量:1
  • 3龙志强,国防科技大学学报,1993年,16卷,3期,110页 被引量:1
  • 4杨泉林,自动化学报,1988年,14卷,2期,88页 被引量:1
  • 5丁汉,熊有伦.计算制造[J].自然科学进展,2002,12(6):573-579. 被引量:3

共引文献77

同被引文献16

  • 1李黎川,丁玉成,卢秉恒.超精密磁悬浮工作台及其解耦控制[J].机械工程学报,2004,40(9):84-88. 被引量:32
  • 2Lin C S, Lay Y L, Chen P W, et al. The laser displacement t measurement with feedback control in a magnetic levitation and suspension system[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 190(1/2): 25-34. 被引量:1
  • 3Stephen C, Paschall II. Design, fabrication, and control of a single actuator magnetic levitation system[D]. Texas: Department of Mechanical Engineering, Texas A&M University, 2002. 被引量:1
  • 4Gentili L, Marconi L. Robust nonlinear disturbance suppression of a magnetic levitation system[J]. Automatica, 2003, 39(4): 735-742. 被引量:1
  • 5XU Shao-hui, XU Zheng-guo, JIN Neng-qiang, et al. Acceleration sensorless levitation control scheme for the hybrid maglev system[C]//Proc Int Conf on Magnetically levitated System'2004. Shanghai, 2004. 被引量:1
  • 6Gurol S, Baldi R, Bever D. Status of the general atomics low speed urban maglev technology development program[C]//The 18th International Conference on Maglev Systems and Linear Drivers. Shanghai, 2004. 被引量:1
  • 7WANG Zhang-hai, WANG De-jun. Dynamic characteristics of a rolling mill drive system with backlash in rolling slippage[J]. Journal of Materials Processing Technology, 2000, 97(1): 69-73. 被引量:1
  • 8Yeou K T, Tsih C W. A novel compensation approach for self- sensing maglev system with controlled-PM electromagnets[J]. IEEE Trans on magnets, 1995, 31 (6): 4208-4210. 被引量:1
  • 9Li L. Compensation of rotor imbalance for precision rotation of planar magnetic bearing rotor[J]. Precision Engineering, 2003, 27(2): 140-150. 被引量:1
  • 10Mao J, Tachikawa H, Shimokohbe A. Precision positioning of DC-motor-driven aerostatic slide system[J]. Precision Engineering, 2003, 27(1): 32-41. 被引量:1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部