期刊文献+

一种新颖的眼部状态识别方法 被引量:7

A Novel Approach for Eye State Recognition
下载PDF
导出
摘要 在疲劳驾驶检测中,对眼部状态的判断是关键的步骤之一。为了对眼部状态进行有效的识别,提出了一种新颖的眼部状态识别 方法。该方法用眼部图像中的某些点的纹理单元的NTU值作为输入特征值,用径向基函数神经网络(RBF)作为分类器。为了进一步提高分类的准确性,又采用了Bagging方法。试验结果表明,该方法易于实现,准确度高,速度快,不受光照条件的影响,可以应用于实际。 This paper presents a new method of eye state recognition. Firstly, it uses NTU as the input eigenvalue, which is picked up from texture character of eye images. RBF neural network is used as classifer. In order to improve the precision of the RBF neural network models, Bagging algorithm is used to build an integration neural network model for eye state recognition. Some experiments to make sure that the method works effective are performed.
出处 《计算机工程》 CAS CSCD 北大核心 2005年第6期166-167,170,共3页 Computer Engineering
基金 国家自然科学基金资助项目(69975003) 中国科学院知识创新工程领域前沿项目
关键词 眼部状态识别 纹理单元 RBF神经网络 BAGGING算法 Eye state recognition Texture unit RBF neural network Bagging algorithm
  • 相关文献

参考文献6

  • 1NCSDR/NHTSA Expert Panel on Driver Fatigue & Sleepiness;Drowsy Driving and Automobile Crashes. Report HS 808 707, 1998. 被引量:1
  • 2Reissman C J. The Alert Driver: A Trucker's Guide to Sleep, Fatigue,and Rest in Our 24-Hour Society. American Trucking Associations,2200 Mill Road, Alexandria, USA, 1996. 被引量:1
  • 3Knipling R R, Wierwille W W. Vehicle-based Drowsy Driver Detection, Current Status and Future Prospects. Proc. IVHS America Fourth Annual Meeting, Atlanta, 1994. 被引量:1
  • 4Harini Veeraraghavan Nikolaos P. Detecting Driver Fatigue Through the Use of Advanced Face Monitoring Techniques. Papanikolopoulos Artificial Intelligence, Robotics, and Vision Laboratory, Department of Computer Science and Engineering University of Minnesota Minneapolis, 2001-09. 被引量:1
  • 5Wang L. Unsupervised Texture Classification of Image Using the Texture Spectrum [J]. Pattern Recognition, 1992, 25(3). 被引量:1
  • 6Breiman L. Bagging Predictors. Machine Learning, 1996, 24(2): 123. 被引量:1

同被引文献27

引证文献7

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部