期刊文献+

选择性神经网络二次集成方法在定量构效关系建模中的应用研究 被引量:3

The study of the two-level selective neural network ensembles modeling for quantity structure-activity relationship (QSAR)
原文传递
导出
摘要 针对在建立定量构效关系(QSAR)模型中,单个人工神经网络模型难以确定参数,容易产生“过拟合”;一般神经网络集成模型虽然建立过程简单,但由于个体差异度小而导致泛化能力相对单个神经网络没有明显改善等问题,提出了一种基于随机梯度法的选择性神经网络二次集成方法。在建立除草剂(苯乙酰胺类化合物)的QSAR模型的实验研究中表明,该方法设计过程简单,能够以较小的运算代价明显地提高了模型的泛化能力,是建立QSAR模型的一个有效方法。 Though neural networks have been widely used in the modeling of quantity structure-activity relationship ( QSAR), there are still many problems puzzling engineers such as the complex design procedure of single neural network, the 'over-fitting' problem and etc. Contrast to single neural network, neural network ensembles are easy to build, but sometimes they could not improve the generalization ability due to small differences among individuals. To solve these problems, a new model is proposed named with two-level selective neural network ensembles based on stochastic gradient select method. Based on this new model, a QSAR for herbicides ( N-phenylacetamides) is established. Simulation results show that the new model is easy to build and promotes the generalization ability of neural network system.
出处 《计算机与应用化学》 CAS CSCD 北大核心 2005年第2期153-156,共4页 Computers and Applied Chemistry
基金 兵器科技预研项目(42001060402)
关键词 构效关系 选择性神经网络二次集成 随机梯度 quantity structure-activity relationship (QSAR) two-level selective neural network ensembles stochastic gradient method
  • 相关文献

参考文献8

  • 1卫连虎,乔园园,张卫东,林少凡.人工神经网络方法在QSAR研究中的应用[J].计算机与应用化学,2000,17(1):33-34. 被引量:8
  • 2谢前,孙红梅,周家驹.人工神经网络方法研究含硫芳香衍生物毒性与结构的关系[J].计算机与应用化学,1996,13(1):20-24. 被引量:11
  • 3Chen YQ, Chen DZ, He CY and Hu SX. Quantitative structureactivity relationships study of herbicides using neural networks and different statistical methods. Chemometrics and Intelligent Laboratory Systems, 1999, 45:267 - 276. 被引量:1
  • 4Hansen L and Salamon P. Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12:993 -1001. 被引量:1
  • 5Dimitris K. Agrafiotis, Walter Cedeno and Victor S. Lobanov:on the use of neural network ensembles in QSAR and QSPR. Journal of Chemical Information and Computer Sciences, 2002, 42 (4) :903 -911. 被引量:1
  • 6Wu JX, Zhou ZH and Chen ZQ. Ensemble of GA based selective neural network ensembles. In:Proceedings of the 8th International Conference on Neural Information Processing ( ICONIP'01 ) , Shanghai, China,2001, 3, 1477 - 1482. 被引量:1
  • 7Osamu Kirino, Chiyozo Takayama and Akihiko Mine. Pesticide Sci,1986, 11-61. 被引量:1
  • 8Howard Demuth and Mark Beale. Neural network toolbox for use with MATLABR, http://www, mathworks, com/access/helpdesk/help/pdf_doc/nnet/nnet, pdf, 2003. 被引量:1

二级参考文献7

共引文献16

同被引文献17

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部