摘要
证明了下述定理:定理1(krarner定理的推广)设G为有限可解群,G/N为超可解群.如果对某k及G的每一极大子群L均有等于1或素数,则G为超可解群,其中F_n(G)归纳定义如次:定理2设群G有限可解,为满整群系{f(p)}所局部定义的群系。
heoren 1 Assume that G is a finite solvable group and G/N is supersolvable.or a prime for some k and each maximal subagoup L of G,then G is supersolvable,whereF_n(G) are defind by induction as following Theorem 2 Assume that G is a finite solvable group,is a formation locally defined by a set of full and integrated formations.If G/N and there exists chief series from Φ(N)toFit(N)of G such that
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1994年第1期1-4,共4页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
克雷默定理
超可解群
费廷子群
Kramer' s theorem
supersolvable groups
Fitting subgroups
loeally defined formations