摘要
确定有限阶群的构造,是有限群理论的核心问题,本文从群G的自同构群间(G)入手,利用群G的自同构群A(G)的阶来刻划群G的构造,采用了一种较为简便的方法证明了下面的结果:定理设G是有限Abel群,若|A(G)|=27p(p为奇素数),于是1)当p=3时,G有43型,2)当p=5时,G有29型;3)当p=17时,G有14型,4)当p≠3,5,17时,G最多有45型.
In this paper we have discussed structures of Abelian group G by order | A(G)| of automorphism group and have obtained all types of finite Abelian group G When the order of A(G) equals 27p (p is odd prime). The following theorem is proved:Theorem Let G be finite Abelian group, if |A(G) |= 27p(p is odd prime),then 1) G has 43 types when p=3;2) G has 29 types when p= 5;3) G has 14 types when p=17;4) G has no more than 45 typed when p3,5, 17.
出处
《武汉大学学报(自然科学版)》
CSCD
1994年第3期21-28,共8页
Journal of Wuhan University(Natural Science Edition)
关键词
自同构
群构造
阿贝尔群
欧拉函数
Abel group, automorphism,structure of group, Euler function