期刊文献+

一种利用声音特性快速切分英文单词音节的算法 被引量:1

A Syllable Identification Algorithm Using Acoustic Properties
下载PDF
导出
摘要 从提高单词层的语音识别精度到提供个性化的发音训练 ,音节切分都有着广泛的应用领域。该文提出了一个利用声音特性对英文单词进行快速音节切分的算法。该方法首先通过对能量和过零率参数的分析 ,划出粗略的音节边界 ,然后检测峰值点 /谷值点的基音周期参数来做修定。实验结果显示 。 Syllable identification has wide uses from increasing the accuracy of word-level recognition to personalizing pronunciation trainning. This paper describes a syllable identification method by using acoustic properties. This method analyses energy and zerocrossing properties to decide a rough boundery of syllables first, then uses pitch properties of peak/valley to refine it. Experimental results show that this algorithm has good performance both in speed and accuracy.
出处 《计算机仿真》 CSCD 2005年第2期86-88,共3页 Computer Simulation
关键词 音节切分 声音特性 方法 Syllable identification Acoustic properties Method
  • 相关文献

参考文献4

  • 1Atsuo Tanaka, Shin Kamiya. A Speech Processing Based on Syllable Identification by using Phonological Patterns [C]. Acoustics, Speech,and Signal Processing, IEEE Interrnational Conference on ICASSP '86., April 1986, 11:2231 -2234. 被引量:1
  • 2M J Cheng, L R Rabiner, A E Rosenberg, C A McGonegal. Some Comparisons Among Several Pitch Detection Algorithms [C]. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP'76, April 1976, 1:332-335. 被引量:1
  • 3Neil J Miller. Pitch Detection by Data Reduction. IEEE Trans[C]. On Acoustics, Speech, and Signal Processing, February 1975, ASSP-23(1):72-79. 被引量:1
  • 4A M Noll. Cepstrum Pitch Determination[J]. J. Acoust. Soc. Am. ,February 1967, 41(2) :293 - 309. 被引量:1

同被引文献9

  • 1Rabiner L R, Sambur M R. An Algorithm for Determining the Endpoint of Isolated utterances. Bell Syst. Tech. J., 1975, 54(2),297~315 被引量:1
  • 2Burileanu D, Pascalin L, Burileanu C, et al. An Adaptive and Fast Speech Detection Algorithm. In: Sojka P, Kopeck I, Pala K, et al eds. Text, Speech and Dialogue: Third International Workshop, TSD 2000. Brno, Czech Republic: Springer-Verlag GmbH, 2000. 177~182 被引量:1
  • 3Beritelli F, Casale S, Cavallaro A. A robust voice activity detector for wireless communications using soft computing. IEEE J Sel Areas Commun, 1998,16(9) : 1818~ 1829 被引量:1
  • 4Beritelli F, Casale S, et al. Performance evaluation and comparison of G. 729/AMR/fuzzy voice activity detectors. IEEE Signal Process Lett, 2002,9(3) :85~88 被引量:1
  • 5Wu Bing-Fei, Wang Kun-Ching. Robust Endpoint Detection Algorithm Based on the Adaptive Band Partitioning Spectral Entropy in Adverse Environments. IEEE Transactions on Speech and Audio Processing, 2005,13 (5) 被引量:1
  • 6Li K, Swamy M N S, Ahmad M O, An Improved Voice Activity Detection Using Higher Order Statistics, IEEE Transactions on Speech and Audio Processing, 2005,13(5) 被引量:1
  • 7张继勇,sp.cs.tsinghua.edu.cn,郑方,sp.cs.tsinghua.edu.cn,杜术,sp.cs.tsinghua.edu.cn,宋战江,sp.cs.tsinghua.edu.cn,徐明星,sp.cs.tsinghua.edu.cn.连续汉语语音识别中基于归并的音节切分自动机[J].软件学报,1999,10(11):1212-1215. 被引量:10
  • 8张文军,谢剑英,李聪.基于贝叶斯方法的鲁棒语音切分[J].数据采集与处理,2002,17(3):260-264. 被引量:2
  • 9何致远,胡起秀,徐光.说话人识别中语音切分算法的研究[J].计算机工程与应用,2003,39(6):55-58. 被引量:4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部