期刊文献+

CBR及KDD技术在中厚板轧制负荷分配建模中的应用 被引量:2

Application of CBR and KDD techniques to modeling plate rolling schedules
下载PDF
导出
摘要 针对中厚板生产产品规格变化大、轧制条件复杂等特点,提出一种基于案例推理的 负荷分配模型,并应用数据库中的知识发现技术进行案例修正,使模型更符合实际轧制情况. In order to develop an adaptive model for automatically generating rolling schedules that comply with practical operations in heavy plate rolling, the techniques of Case-Based Reasoning (CBR) and Knowledge Discovery in Database (KDD) are introduced in the modeling process. In the model CBR not only is used for storing and retrieving the cases, i.e. schedules by which high-quality products have been rolled, but also generates an initial schedule for the material to be rolled according to the similarity in attributes between the material and the stored cases. KDD is introduced to find the rules from the operational data records to modify the initial schedule if there is difference between the ongoing rolling practice and the case applied. The experimental results of comparing the schedules against the practical rolling data show that the schedule generated by the new model is more reasonable and conformable to the actual rolling practice than that generated by traditional methods, which indicates that the method proposed in this paper is a promising method for rolling schedule generation modeling.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2005年第1期98-101,共4页 Journal of University of Science and Technology Beijing
关键词 负荷分配模型 基于案例的推理 数据库中的知识发现 Adaptive systems Knowledge based systems Loads (forces) Mathematical models Steel sheet
  • 相关文献

参考文献7

  • 1孙本荣等主编..中厚钢板生产[M].北京:冶金工业出版社,1993:522.
  • 2田盛丰,黄厚宽编著..人工智能与知识工程[M].北京:中国铁道出版社,1999:361.
  • 3鞍钢新轧钢股份有限公司.厚板厂过程控制计算机系统改造初步设计书[Z].北京:高效轧制国家工程研究中心,1999.. 被引量:1
  • 4Leake D. CBR in Context: the Present and Future. Case-based Reasoning: Experiences, Lessons & Future Directions. AAAI Press, 1996. 被引量:1
  • 5Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database. Proc ACM SIGMOD Int Conf Manage Data, 1993(2): 207. 被引量:1
  • 6Agrawal R, Srikant R. Mining quantitative association rules in large relational tables. Proc ACM SIGMOD Int Conf Manage Data, 1996(2): 12. 被引量:1
  • 7Agrawal R, Gupta A, Sarawagi S. Modeling multidimensional databases. In: Proc. the 13th Int Conf on Data Engineering. Birminham, 1997. 被引量:1

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部