期刊文献+

基于拟颗粒的气固两相曳力模型研究 被引量:2

THE INVESTIGATION ON THE GAS-SOLID DRAG MODEL BASED ON VIRTUAL PARTICLES
下载PDF
导出
摘要 为了研究气固两相流动大涡模拟中合适的曳力计算模型,本文引入拟颗粒和拟颗粒表面能的概念,通过拟颗粒表面能与外界输入能量之间的平衡关系来确定拟颗粒的粒径。根据拟颗粒粒径,得到运算量较小且考虑颗粒团聚效应的曳力计算模型。应用本文的曳力计算模型对二维竖直槽道内稠密气固两相流动进行了大涡模拟,结果表明颗粒的浓度分布具有上稀下浓,壁面附近浓中心稀及颗粒聚集等特点。这与实验结果在定性上是一致的。对气相和颗粒相的瞬时速度场进行了分析,发现气相和颗粒相速度场分布的非对称性是形成颗粒浓度分布壁面附近浓中心稀的重要原因之一。 The concepts of virtual particles and surface energy of virtual particles are introduced to study the gas-solid drag model suitable for large eddy simulation. The diameters of virtual particles are determined by letting the surface energy of virtual particles equal to the input energy. The drag model with less computational consumption and also considering the effect of particle agglomerates is obtained according to the diameters of virtual particles. The developed drag model is applied to the large eddy simulation of the dense gas-solid flow in a vertical channel. The results of the simulation showed the cluster formation and the characteristic of the particle concentration distribution, which is dilute in top and dense in bottom, dilute in center of the channel and dense near the wall. These results agree with the experiment qualitatively. The transient gas and particle flow velocity field are analyzed. It is found that the asymmetric distribution of the gas and particle flow velocity is an important reason for the particle concentration distribution dilute in center of the channel and dense near the wall.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2005年第2期253-256,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50376028)
关键词 气粒两相流动 大涡模拟 曳力模型 gas-solid flow large eddy simulation drag model
  • 相关文献

参考文献9

  • 1Wen C Y, Yu Y H. Mechanics of Fluidization. In: Chem.Eng. Progress Symp., New York: American Institute of Chemical Engineers, 1966. 100-111. 被引量:1
  • 2Syamlal M, O'Brien T J. Simulation of Granular Layer Inversion in Liquid Fluidized Beds. Int. J. Multiphase Flow, 1988, 14(5): 473-481. 被引量:1
  • 3Ergun S. Fluid Flow Through Packed Columns. Chem.Eng. Progress, 1952, 48(1): 89-94. 被引量:1
  • 4Gilibaro LG, Di Felice R, Waldram SP. Generalized Friction Factor and Drag Coefficient Correlations for Fluid Particle Interactions. Chem. Eng. Sci., 1985, 40(14):1817-1823. 被引量:1
  • 5Horio M, Ishii H, Nishimuro M. On the Nature of Turbulent and fast fluidized Beds. Powder Technology, 1992,70(3): 229-236. 被引量:1
  • 6O'Brien T J, Syamlal M. Particle Cluster Effects in the Numerical Simulation of a Circulating Fluidized Bed. In:Preprint Volume of 4th Int. Conf. on CFB, Somerset,USA, 1993. 430-435. 被引量:1
  • 7肖海涛..欧拉气固曳力模型的理论研究与数值模拟[D].清华大学,2001:
  • 8Li J, Kwauk M. Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method. Beijing: Metallurgical Industry Press, 1994. 被引量:1
  • 9陈志兵..竖直槽道内气固两相流动大涡模拟[D].清华大学,2003:

同被引文献22

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部