期刊文献+

基于反向矩阵的最大频集的交互式挖掘算法

An Algorithm for Interactive Mining Maximal Frequent Itemset Based on Inverted Matrix
下载PDF
导出
摘要 发现最大项目频集是数据挖掘应用中的关键问题。本文提出了一个基于反向矩阵的最大频集的交互式挖掘算法。该算法将事务数据库转换成反向矩阵,缩小了候选子集,利于交互式挖掘。通过对每个频繁项独立建立COFI 树,减少了挖掘中对内存容量的依赖。 Discovering maximal frequent itemsets is a key problem in data mining applications.In this paper ,an algorithm based on inverted matrix for interactive mining is proposed.Using the unique transforming transactional database into inverted matrix ,the number of candidate itemsets is greatly decreased, therefore it is advantageous for interactive mining. According to building independent COFI-tree to frequent itemset, that is less reliance on memory size.
出处 《计算机与现代化》 2005年第3期1-4,共4页 Computer and Modernization
关键词 交互式数据挖掘 最大频繁集 COFI-树 反向矩阵 interactive data mining maximal frequent itemset COFI-trees inverted matrix
  • 相关文献

参考文献9

  • 1路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 2Jiawei,Han,Micheline,Kamber..数据挖掘 概念与技术 英文[M].北京:高等教育出版社,2001:550.
  • 3宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 4邵峰晶,于忠清编著..数据挖掘原理与算法[M].北京:中国水利水电出版社,2003:322.
  • 5Lin DIM,Kedem ZM.A new algorithm for discovering the maximum frequent set[A]. In: Schek HJ, ed. Proceedings of the 6th European Conference on Extending Database Technology[C]. Heidelberg: Springer-Verlag, 1998. 105-119. 被引量:1
  • 6Han J, Jian P, Yiwen Y. Mining frequent patterns without candidate generation[A].In: Proceedings of the 2000 ACM SIGMOD International Conference Management of Data[C].Dallas, 2000. 1-12. 被引量:1
  • 7Shao FengJing.An outLiner-analysis algorithm based on the reduction of boundary cells influence[A].Proc.of the 8th Joint International Computer Conference[C].2002. 被引量:1
  • 8Richard Bolton, Niall Adams.An iterative hypothesis-testing strategy for pattern discovery[A].The Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].2003. 被引量:1
  • 9Ke Wang, Yuelong Jiang, Laks Lakshmanan.Mining unexpected rules by pushing user dynamics[A].The Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining[C].2003. 被引量:1

二级参考文献3

共引文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部