期刊文献+

多体系统动力学设计灵敏度分析直接微分法 被引量:2

DIRECT DIFFERENTIATION METHOD FOR DESIGN SENSITIVITY ANALYSIS OF MULTIBODY SYSTEM DYNAMICS
下载PDF
导出
摘要 针对受完整约束的多体系统动力学微分/代数方程数学模型动态最优化设计问题,建立了通用的目标函数和约束方程,并以此为基础,用直接微分方法系统地推导出了计算设计灵敏度的通用公式,最后通过平面机械臂模型对理论结果和相应算法进行了验证. The direct differentiation method is used for design sensitivity analysis of multibody system dynamics described by differential/algebraic equations with holo nomic constraints. The results can be used to optimize multibody system dynamics with generic objective functions and constraints. An example of a planar manipulator with two links is analyzed to test the method given in the current paper.
出处 《力学与实践》 CSCD 北大核心 2005年第1期60-63,共4页 Mechanics in Engineering
基金 国家自然科学基金项目(19902006)资助.
关键词 设计灵敏度 完整约束 多体系统动力学 微分法 代数方程 微分方法 推导 机械臂 通用 算法 multibody system dynamics, differential/algebraic equations, sensitivity analysis, direct differentiation method
  • 相关文献

参考文献3

二级参考文献46

  • 1Haug E J.Computer-aided kinematics and dynamics of mechanical systems,Vol.I:Basic Methods [M].Ally & Bacon,1989. 被引量:1
  • 2Amirouche F M L.Computational methods in multibody dynamics [M].Prentice Hall,Englewood,Cliffs,New Jersey,1993. 被引量:1
  • 3Manuel F O S Pereira,Jorge A C Ambrosio.Computational dynamics in multibody systems [M].Kluwer Academic Publisher,Dordrecht,1994. 被引量:1
  • 4Shabana A A.Computational dynamics [M].John Wiley & Sons,New York,1995. 被引量:1
  • 5Schiehlen W,(et al).Multibody systems handbook [M].Springer,Heidelberg,1990. 被引量:1
  • 6Schielhen W.(et al) Advanced multibody system dynamics,solid mechanics & its application [M].Kluwer Academic Publishers,Dordrecht,1993. 被引量:1
  • 7Andrzejewski T.Bock H G Eich,E,et al,Recent advances in the numerical integration of multibody systems [A].Advanced Multibody System Dynamics [M].W.Schiehlen(ed),Kluwer Academic Publishers,Netherlands,1993,127-151. 被引量:1
  • 8Barman N C.Design sensitivity analysis and optimization of constrained dynamic systems [D].The University of Iowa,1979. 被引量:1
  • 9Sohoni V.N.and Haug E.J.,A state space technique for optimal design of mechanisms.ASME Journal of Mechanical Design,1982,104:792-798. 被引量:1
  • 10Krishnaswami P.Computer-aided optimal design of constrained dynamics [D].The University of Iowa,1983. 被引量:1

共引文献15

同被引文献22

引证文献2

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部