期刊文献+

广义幂级数环的Morita对偶 被引量:1

Morita Duality for the Rings of Generalized Power Series
原文传递
导出
摘要 设A,B是有单位元的环, (S,≤)是有限生成的Artin的严格全序幺半群, AMB是双模.本文证明了双模[[AS,≤]][MS,≤][[BS,≤]]定义一个Morita对偶当且仅当 AMB定义一个Morita对偶且A是左noether的,B是右noether的.因此A上的广 义幂级数环[[AS,≤]]具有Morita对偶当且仅当A是左noether的且具有由双模AMB 诱导的Morita对偶,使得B是右noether的. Let A, B be associative rings with identity, and (S,≤) a strictly totally ordered monoid which is also Artinian and finitely generated. For any bimodule AMB, we show that the bimodule [[AS,≤]][MS,≤][[BS,≤]] defines a Morita duality if and only if AMB defines a Morita duality and A is left noetherian, B is right noetherian. As a corollary, it is shown that the ring [[AS,≤]] of generalized power series over A has a Morita duality if and only if A is a left noetherian ring with a Morita duality induced by a bimodule AMB such that B is right noetherian.
作者 刘仲奎
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第2期397-402,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10171082)教育部科技创新工程重大项目培育资金 TRAPOYT资助项目
关键词 MORITA对偶 左线性紧模 广义幂级数环 Morita duality Left linearly compact module Ring of generalized power series
  • 相关文献

参考文献1

共引文献1

同被引文献6

  • 1Elliott G A, Ribenboim P. Fieids of generalized power series [J]. Arch Math, 1990 (54): 365-371. 被引量:1
  • 2Ribenboim P. Northerian rings of generalized power series [J]. J Pure Appl Algebra, 1992 (79): 293-312. 被引量:1
  • 3Ribenboim P. Rings of generalized power series Ⅱ: units and zero-divisors [J]. J Algebra, 1994 (168): 71-89. 被引量:1
  • 4Ribenboim P. Special properties of generalized power series [J]. J Algebra, 1995 (173): 566-586. 被引量:1
  • 5Liu Zhongkui. Special properties of rings of generalized power series [J]. Comm Algebra, 2004 (32): 3215-3226. 被引量:1
  • 6徐丽琼.关于环扩张的c-可换性质[J].福建师范大学学报(自然科学版),2000,16(2):27-29. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部