期刊文献+

一种改进的半参数极大似然法估计量的渐近性质

Asymptotic Properties of a Modified Semi-Parametric MLE in Linear Regression with Right-Censored Data
原文传递
导出
摘要 本文研究线性回归模型, Y=β'X+∈,并假设Y可被右删失,∈的分布函 数F0未知.本文证明,在某些条件下, β的一种改进的半参数极大似然法估计量β 有相合性. 同时证明,如果F0不连续,则P{β≠βi.o.}=0.这意味着以概率为一, 当样本很大时, β=β.文献中的现有估计量未见有关于这一性质的报道.相反,包括 Buckley-James估计量及M-估计量在内的大多数的估计量,都不满足这一性质. Consider a linear regression model, Y =β'X + ∈, where Y may be right censored and the cdf F0 of ∈ is unknown. We show that a modified semi-parametric MLE, denoted by β, is strongly consistent under certain regularity conditions. Moreover, if F0 is discontinuous, then P(β≠βi.o.)=0, which means that P(β=β if the sample size is large)=1. The latter property has not been reported for the existing estimators. On the contrast, most estimators, such as the Buckley-James estimator and M-estimators β, satisfy that P(β≠βi.o.)=1.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第2期391-396,共6页 Acta Mathematica Sinica:Chinese Series
关键词 相合性 超优效性 半参极大似然法估计量 Consistency Super-efficiency Semi-parametric MLE
  • 相关文献

参考文献21

  • 1Theil H., A rank-invariant method of linear and polynomial regression analysis, I. Proc. Kon. Ned. Akad.V. Wetensch. A, 1950, 53: 386-392. 被引量:1
  • 2Sen P. K., Estimates of the regression coefficient based on Kendall' tau, JASA, 1968, 63: 1379-1389. 被引量:1
  • 3Bickel P. J., On adaptive estimation, Ann. Statist., 1982, 10: 647-671. 被引量:1
  • 4Huber P. J., Robust estimation of a location parameter, Ann. Math. Statist., 1964, 35: 73-101. 被引量:1
  • 5Ritov Y., Estimation in a linear regression model with censored data, Ann. Statist., 1990, 18: 303-328 被引量:1
  • 6Montegomery D. C., Peck E. A., Introduction to linear regression analysis, New York: Wiley, 1992. 被引量:1
  • 7Draper N. R., Smith H., Applied Regression analysis, New York: Wiley, 1981. 被引量:1
  • 8Zhang C. H., Li X., Linear regression with doubly censored data, Ann. Statist., 1996, 24: 2720-2743. 被引量:1
  • 9Miller R. G., Least squares regression with censored data. Biometrika, 1976, 63: 449-464. 被引量:1
  • 10Buckley J., James I., Linear regression with censored data, Biometrika, 1979, 66: 429-436. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部