期刊文献+

基于支持向量机的病毒程序检测方法 被引量:4

Research of Malicious Executables Detection Method Based on Support Vector Machine
下载PDF
导出
摘要 支持向量机是一种对于小样本具有良好学习性能的机器学习方法 .本文将支持向量机方法用于病毒程序的检测中 ,可以改善其它方法在先验知识较少情况下的推广能力的问题 .仿真实验结果看出 ,该方法在训练样本数相对较少的情况下 ,仍然具有较高的检测率和正确率 ,同时也具有较低的虚警率 . Support vector machine is a machine study method with good performance when the sample size is small. The method of support vector machine is used to malicious executable in the paper that improves the generalizing ability with given less prior knowledge. Then simulation results express this method has better detection rate, overall accuracy and false positive rate reduced with less training sample size.
作者 彭宏 王军
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第2期276-278,共3页 Acta Electronica Sinica
基金 四川省教委自然重点科研项目 (No.0 1 2 9844)
关键词 病毒程序 恶意程序 网络安全 支持向量机 统计学习 Classification (of information) Computer simulation Feature extraction Internet Learning systems Security of data Statistical methods
  • 相关文献

参考文献5

  • 1Steve R W,Morton S,et al.Anatomy of a Commercial-Grade Immune System[R].IBM Research White Paper,1999. 被引量:1
  • 2William C.Learning trees and rules with setValued features[A].American Association for Artificial Intelligence(AAAI)[C].Menlo Park,CA:AAAI Press,1996.(1).709-716. 被引量:1
  • 3Matthew GS,Eleazer E,et al.Data mining methods for detection of new malicious executables[A].IEEE Symposium on Security and Privacy[C].Oakland,CA,May 2001:1207-1217. 被引量:1
  • 4Gerald T,Jeffrey O,et al.Neural networks for computer virus recognition[J].IEEE Expert,IEEE Computer Society,August,1966,11(4):5-6. 被引量:1
  • 5Vapnik V N.The Nature of Statistical Learning Theory[M].New York: Spring-Verlag,1995. 被引量:1

同被引文献60

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部