摘要
本文刻划了线性模型(Y,Xβ,σ2V,V≥0)在不完全椭球约束:(β-β0)’N(β- β P0)≤σ2,N ≥ 0下的线性估计的可容许性.本文的结果显示了一个有趣的现象,即一个线性估计在全体线性估计所组成的类中的可容许性与椭球的中心β0无关,而在全体齐次线性估计所组成的类中的可容许性与β0有关.
The admissibility of a linear estimator is characterized in the linear models (Y,Xβ,σ2V,V≥0) where considered regression parameter varies in a incomplete ellipsoia (β:(β-β0)’N(β- β P0)≤σ2,N ≥ 0 The results shown that the admissibility of linear estimator among the class of all linear estimators is independent on β0, but the admissibility of homogeneous linear estimator among the class of all homogeneous linear estimators is dependent oil β0.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1994年第3期289-295,共7页
Acta Mathematica Sinica:Chinese Series
关键词
线性模型
线性估计
可允许性
admissibility, ellipsoidal restricts, linear model