摘要
本文综述了Banach空间常微分方程理论近期的发展,主要为紧型条件、耗散型条件、非线性半群、上下解方法、边值问题、Banach空间中的积-微分方程和脉冲方程,以及对于不动点理论和临界点理论的应用,并且给出了作者们在这一领域中的一些新结果.
The paper presents a survey of the latest development of the theoryof ordinary differential equations in Banach spaces.Mainly,it contains topics suchas compactness conditions,conditions of dissipative type, nonlinear semigroups, upper-lower solution method,boundary value problems.It also includes integro一differentialequations and impulsive equations in Banach spaces,together with applications to fix-ed point theory and critical point theory.Some results therein are new and due tothe authors.
出处
《数学进展》
CSCD
北大核心
1994年第6期492-504,共13页
Advances in Mathematics(China)
基金
国家自然科学基金
国家教委博士点专项基金
关键词
常微分方程
拓扑度
巴拿赫空间
Ordinary differential equations in Banach spaces
topological degree
upper-lower solution method