期刊文献+

用边界元方法数值分析绕平壁上一薄平板的STOKES流动 被引量:3

NUMERICAL ANALYSES OF STOKES FLOW PASSING OVER A FENCE ON A FLAT PLATE WITH BEM
下载PDF
导出
摘要 本文用边界元方法研究了绕平壁上一薄平板的Stokes流动。数值模拟了薄平板与平壁成不同倾角φ时的流场。我们发现:当φ=π/2时,平板左右两侧形成大小相等的两个涡旋,其涡心到角点的距离为平板高的0.54倍;当φ=5π/12时,平板两侧仍然形成两个涡旋,不过平板右侧5π/12角内的涡旋明显大于平板左侧的涡旋,其涡心距角点的距离右侧是平板高的0.68倍,左侧是0.29倍;当φ=π/3时,平板左侧的涡旋已经消失,右侧π/3角内仍然形成一个涡旋;而当φ=π/12时,平极左右两侧均无涡旋。我们还数值分析了流场中形成涡旋时的涡心位置与平板倾角φ之间的关系,并给出薄平板上的面力与压力的分布曲线,数值模拟的流场与Tancda的实验结果比较完全一致。 In this paper, the various phases of Stokes flows passing over a fence on a flat-iplate inclining different angles with the flat plate are studied by the use of the BF.M (Boundary Fle-ment Method). The velocity fields of numerical simulation show that when the flow passes over the fence which is mounted vertically on the flat plate (0 = p/ 2), a large Vortex is formed within the corner, and the distance between the vortex center and the corner point is about 0.54 times the height of the fence. When the flow passes over the (<p =) 5 n / 12 fence, it may be seen that the size of a vortex within the7n/ 12 corner is much smaller than other vortex within the corner of 5n/ 12, and the distance between the vortex center and corner point is 0.29 times height of the fence in the 7n/ 12 corner, and 0.68 times the fence height in the 5n/ 12 corner. When the flow passes over the n/3 fence, a vortex is formed within the corner of n/ 3 but within other corners there is not a vortex. When the How passes over the n/ 12 fence, there is not a vortex within the two corners of the fence. In particular, we also calculated the distributive curves of the surface force and the pressure on the fence, these being difficult in the experiment but being very important. By comparison, the numerical simulation of velocity fields are in good agreement with Taneda's experimental results.
作者 林长圣
机构地区 内蒙古民族师院
出处 《上海力学》 CSCD 1994年第1期67-73,共7页 Chinese Quarterly Mechanics
关键词 边界元法 涡旋流动 Boundary Element Method, Stokes flow, Vortex.
  • 相关文献

参考文献1

  • 1吴江航.数值求解不可压粘性流体定常运动的格林函数方法[J]力学学报,1984(05). 被引量:1

同被引文献24

  • 1吴江航.数值求解不可压粘性流体定常运动的格林函数方法[J].力学学报,1984,16(5):425-433. 被引量:3
  • 2[1]Sturges,L.Stokes flow in a two-dimensional cavity with moving end walls[J].Physics Fluids,1986,29:1731-1734. 被引量:1
  • 3[2]Gürean,F.Streamline topologies in Stokes flow within lid-driven cavities[J].Theoretical and Computational fluid dynamics,2003,17:19-30. 被引量:1
  • 4[3]Borns,M.and Hartnack,J.N.Streamline topologies near simple degenerate critical points in two-dimensional flow away from boundaries[J].Physics Fluids,1999,11:314-324. 被引量:1
  • 5[5]Lin Changsheng,Han Qingshu.Boundary element analysis of low-Reynolds-number viscous fluid flow[J].Computation Mechanics.1991,2:1481-1486. 被引量:1
  • 6[7]Lin Changsheng and Yang Guizhi.A boundary element method for numerical solution of viscous fluid flow past two cylinders[C].In:Editors Yao Zhenhan and Aliabadi.Boundary element Techniques.Beijing:Tsinghua University Press andSpringer,2002.101-105. 被引量:1
  • 7[8]Lin Changsheng and Yang Guizhi.Numerical simulation of Moffatt vortices in V-shaped notch[J].Computational Methods in Engineering and Science,2003,9:733-738. 被引量:1
  • 8[9]Gaskell,P.H.,Gürean,F.,Savage,M.D.,and Thompson,H.M.Stokes flowin a double-lid-driven cavitywith free surface side walls[J].Journal of Mechanical Engineering Science,1998,212(Part C):387-403. 被引量:1
  • 9Burggraf O.Analytical and Numerical Studies of the Structure of Steady Separated Flows[J].Journal Fluid Mechanics,1966(24):113~151. 被引量:1
  • 10Pan F,Acrivos A.Steady Flows in Rectangular Cavities[J].Journal Fluid Mechanics,1967(28):643~655. 被引量:1

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部