摘要
对椭圆型偏微分方程在条件N(x,y,z)=P ̄2(x)+Q ̄2(y)+R ̄2(z)+p'(x)+Q'(y)+R'(z)下给出一种变量替换,借助于这种变换,可把其化为泊松方程。从而其各种定解问题解的研究可以变得简单。在此基础上引入一类具有调和因子的函数。
This paper gives a variable replacement for apartial differential equation of ellipse typeunder the condition N(x,y,z)=P ̄2(x)+Q ̄2(u)+R ̄2(z)+P'(x)+Q'(y)+R'(z),by which it can be changed into possion equation. Therefore, the study of solution of it can be simplified.A kind of function with harmonic factor is introduced on the basis.
出处
《山东师范大学学报(自然科学版)》
CAS
1994年第4期6-9,20,共5页
Journal of Shandong Normal University(Natural Science)
关键词
偏微分方程
基本解
调和因子函数
椭圆型方程
partial differential equation of ellipse type
possion equation
compound equation
basic solution
function with compound factor