期刊文献+

最小二乘和奇异值分解法在边界元法中的应用 被引量:1

Application of Least Squares and Singular Value Resolving Method to Boundary Element Method
下载PDF
导出
摘要 采用最小二乘与奇异值分解结合的方法,给出求解系数矩阵不满秩的线性代数方程组的数值方法,进而将此方法应用于边界无法中,处理给定外力的第一边值问题,特别地用于处理给定外力的三维裂纹问题。此外,本文还给出求解三维有限体裂纹问题的超奇异积分方程组,并使用有限部积分与边界元法为其建立了数值法。最后计算了若于典型例子的应力强度因子,数值结果与现有文献的相比,符合很好。 The application of least squares and singular value resolving method to linear algebraic equations is introduced. This method is very effective to the algebraic equations whose matrix is singular. It may be applied to the boundary element method which treats the elasticity problems with the conditions of given external loadings, specifically to planar crack problems in three dimensional elasticity. Moreover, the hypersingular integral equations of a planar crack embedded in a 3-D finite body are given, and the finite-part integral and boundary element method is used to discretize the equations as a set of linear algebraic equations which are solved by the least squares and singular value resolving method. Finally several typical examples are calculated, and the numerical results of the stress intensity factors are obtained.
出处 《南京航空航天大学学报》 CAS CSCD 1994年第5期716-719,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 自然科学基金
关键词 最小二乘法 奇异值分解 边界元法 应力强度因子 least squares method singular value resolving boundary element method finite-part integral stress intensity factor
  • 相关文献

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部