期刊文献+

有界导数法在多时间尺度问题中的应用

APPLICATION OF BOUNDED DERlVATIVE METHODIN MULTI-TIMESCALES PROBLEMS
下载PDF
导出
摘要 本文综述了有界导数法在多时间尺度问题中的应用,Kreiss等提出的有界导数法及其在大气和海洋运动方程的初始化和推导简化系统等方面很有实用价值,它可以使方程的初始化过程扩展到适用于赤道和局部区域模式;各种简化系统可克服原始方程的不对称性所造成的精度限制,并可形成适定的初边值问题,此外还同其他方法作了比较,也给出了部分数值结果。 This paper reviews the application of bounded derivative method in multi-timescale problems Kreiss et al proposed the Bounded Derivative Method and applied it to the initialization of atmosphcric and oceanic motion equations and the derivation of reduced systems,Initialization process can be extended and applied to equatorial and limited,area model,The reduced systems can overcome the severe restrictions on accuracy and stability which are due to the extreme skewness of original system,and will lead to a well-posed initial-boundary value problem,In this paper a comparison is made with other methods and some numerical results are given.
出处 《力学进展》 EI CSCD 北大核心 1994年第2期233-247,共15页 Advances in Mechanics
关键词 多时间尺度 大气 海洋 环境科学 bounded derivative method multi-timescales problem initiali-zation process shallow-water equation reduced systems
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部