摘要
本文从GCIR差分格式出发,通过附加中心加权形式的反扩散流量,构造出一类具有二阶精度的对称型TVD格式以及相应的一般形式的隐式格式,并针对双曲型方程组问题进行了讨论。同时文中还采用这类格式求解Euler方程,成功地数值计算了具有激波的流动问题。
A class of second -order explicit and implicit symmetric total variation diminishing (TVD)schemes is constructed for the computation of weak solutions of hyperbolic conservation laws.The resulting scheme can be viewed as a limited anti-diffusive flux, that is centered weighted flux, to add to a first- order GCIR scheme. Numerical experiments for solving the Euler equations for capturing shock waves show that the symmetric TVD schemes are quite robust and accurate.
出处
《计算物理》
CSCD
北大核心
1994年第1期45-50,共6页
Chinese Journal of Computational Physics