摘要
本文证明了两个正规定则:(i)设M为区域D内的亚纯函数族,a0(z),…,ak-1(z)为D内k个全纯函数。若,f的每个零点之级≥m,而g(z)-bj(j=1,2;b1,b2∈C\{0},b1≠b2)的每个零点之级分别≥nj,这里g(z)…+a0(z)f(z),并且(k+1),则M在D内正规。(ii)设F为区域D内的全纯函数族,为给定的常系数多项式,n≥1。若有f'P(f)在D内不取1,则F在D内正规。
This paper proves two normal criteria: (i) Let M be a family of meromorphic functions in a domain D, a0 (z),..., ak-1(z) be k holomorphic functions in D. If M, the order of each zero of F is ≥m, and the order of each zero of g(z)- bj (j=1,2; b1, b2∈C\{0}, b1≠b2) is ≥ nj , respectively, where g(z)=f(k)(z) + ak-1(z)f(k-1)(z)+ ...+a0(z)f(z),and m,n1,n2 are positive integers satisfing (k+1) <1, then M is normal in D. (ii) Let F be a family of holomorphic functions in a domain D,P(w) = wn + an-1wn-1 + ... + a1 w + a0 be a given polynomial with constant coefficients,n≥1. If does not assume 1 in D, then F is normal in D.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
1994年第3期23-28,共6页
Journal of East China Normal University(Natural Science)
基金
国家自然科学基金
关键词
正规定则
半纯函数
meromorphic functions,normal criterion