摘要
本文讨论了二元函数的可积性与其双重正弦、余弦级数的系数间的关系.将[1]中关于双重余弦的结果作了推广,同时得到了双重正弦级数的相应结果.并举例说明所得结果中指标不能再提高.
This note deals with the relations between the integrability of double trigonometric series and their coefficients. The corresponding results of [1]are extended to the double sine and cosine series. It is also shown by two examples that the indices are sharp.
出处
《杭州大学学报(自然科学版)》
CSCD
1994年第1期1-6,共6页
Journal of Hangzhou University Natural Science Edition
关键词
双重三角级数
可积性
三角级数
Fourier series
Fourier coefficient
Abel's transform