摘要
本文介绍利用TM数据进行动态聚类并作最小距离分类的非监督和监督相结合的分类方法,对桔乡黄岩市郊的土地利用进行自动分类,获得了能充分揭示桔园分布的高质量土地利用分类图像;继而采用阈值法和均值─均方差窗口法成功地实现了桔林资源信息的自动提取,面积精度达95.3%。为在我国南方亚热带地区快速监测经济林资源及其动态变化提供了有效的新手段。
Abstract The test-area of 256 × 256 pixels sub-image within Huangyan county, Zhejiang province, was selected for application of landsat TM data to landuse classifcation and thematic information extraction studies. A method of integrated supervised classifier(dynamical clustering) with unsupervised classifier (minimal distanse) is used, the results are very satisfactory. The information of citrus trees distribution is also extracted successfully, the accuracy is 95. 3%. The research provided a efficent approch to invistigate the economic forest resource and detect its change rapidly in subtropical area.
出处
《国土资源遥感》
CSCD
1994年第2期28-33,共6页
Remote Sensing for Land & Resources