摘要
先用摄动法将薄板的非线性微分方程组化为一系列线性微分方程组,然后用变率配点法解这些线性微分方程组。给出算例,并与有限元法结果进行了比较。
At first, perturbation method is used to change nonlinear differential equations into a series of linear differential equations, and then these linear differential equations are solved by rate collocation method.
出处
《广西大学学报(自然科学版)》
CAS
CSCD
1994年第3期249-253,共5页
Journal of Guangxi University(Natural Science Edition)
关键词
薄板
几何
非线性
摄动法
变率配点法
thin plates
geometric nonlinearity
perturbation method
rate collocation method