摘要
证明了如下结果:设M,N为平方可积鞅,φ,ψ为可料过程,且E分别表示M,N的二次变差,Rt=[0,t],[M,N]=(1/2)([M+N]-[M]-[N]).这一结论推广和改进了chevalier在文[1]中的结果.同时,还证明了平面随机积分两个类似于L—S积分的性质.
In this paper,we prove that if M and N are square integrable martingales,φ and ψare predictable processes, E and E then are the quadratic variation of M, N respectively, and [M,N]=(1/2)([M+N][M]-[N]). This result extends the conclusion in paper [1]. Two properties similar to L-S gral are also given.
关键词
平方可积鞅
二次变差
随机积分
square integrable martingales
quadratic vairation
stochastic integral