摘要
设X为凸度量空间,具有性质(C)和(E),K是X的非空凸子集,T:K→2k使得x→d(x,Tx)是L.S.C.若inf{d(x,Tx);x∈K}=0,且 x,y∈K,λ∈[0,1],u=W(x,y,λ)(凸结构)有d(u,Tu)≤ (max{d(x,Tx),d(y,Ty)}),这里:R+→R+满足条件 (0)=0,在0的右边不减,连续,则T在K上有不动点.给出了u.S.c.集值映射的不动点定理,推广了T.H.Chang和C.L.Yen在Banach空间中的相应结果.
Let X be a convex metric space with properties(C)and(E).K be a nonempty convex subset of X. T:K→2 ̄x be a mapping such that the mapping x→d(x,Tx) is L. S.C. If inf{d(x,Tx):x∈K} =0 and for x,y in K,0≤λ≤1 u=ω(x,y,λ),and d (u, Tu)≤φ(max {d (x ,Tx), d (y,Ty)}) Where φ: R+→R+ is nondecreasing and continuous from the right at 0 with φ(0)=0,Then T has a fixed point on K. It get also the fixed point theorem for U. S. C. Set-valued mappings. They generalized the results of T. H. chang and C.L. Yen in Banach space.
出处
《东北师大学报(自然科学版)》
CAS
CSCD
1994年第4期13-16,共4页
Journal of Northeast Normal University(Natural Science Edition)
关键词
凸度量空间
集值映射
不动点
convex metric space
Set-valued mapping
fixed point