期刊文献+

神经网络与HMM构成的混合网络在语音识别中应用的研究 被引量:8

Hybrid Networks of Neural Nets and Hidden Markov Models Applied to Speech Recognition
下载PDF
导出
摘要 隐马尔可夫模型(HMM)技术是语音识别中应用较为成功的算法,但它的缺点影响了其精度、速度、硬件实现和推广应用,神经网络(NN)具有并行性、强的分类能力和易于硬件实现等优点。将NN与HMM相结合构成混合网络,能克服HMM与NN的缺点,保留双方的优点,本文详细评述了目前在语音识别中应用的由HMM和NN构成的四种混合网络。通过对其结构、识别性能和特点的分析,可以看出HMM和NN构成的混合网的性能明显优于纯HMM和NN,是更适于语音识别的网络。 Hidden Markov Model(HMM)is a successfully used algorithm in speech recognition, yet its disadvantages limit its performance, speed, hardware implementation and application. Neural network (NN)has many advantages such as parallel processing ability, powerful discriminating ability, ease of hardware implementation etc.The hybrid systems based on the combination of HMM and NN can overcome their disadvantages while maintain their advantages.In this paper, four kinds of HMM and NN hybrid systems which have been widely used in speech recognition were described in detail. From the discussion of their structure, recognition performance and characteristics, it can be seen that the gybrid systems are superior to HMM and NN thus are more suitable for speech recognition.
出处 《电子学报》 EI CAS CSCD 北大核心 1994年第10期73-80,共8页 Acta Electronica Sinica
关键词 神经网络 隐马尔可夫模型 混合网络 语音识别 Neural networks, Hidden Markov model, Hybrid networks, Speech recognition
  • 相关文献

参考文献17

二级参考文献12

共引文献11

同被引文献47

  • 1林遂芳,潘永湘,孙旭霞.基于HMM和小波网络模型的抗噪语音识别方法[J].系统仿真学报,2005,17(7):1720-1723. 被引量:13
  • 2宋小鹏,潘宏侠,宋叔飚.神经网络在语音识别中的应用[J].机械工程与自动化,2006(3):25-26. 被引量:3
  • 3Pellom B L,Hansen J H L.Automatic segmentation of speech recorded in unknown noisy channel characteristics[J].Speech Communication,1998,25(1-3):97-116. 被引量:1
  • 4Hemert J P V.Automatic segmentation of speech[J].IEEE Transactions on Signal Processing,1991,39(4):1008-1012. 被引量:1
  • 5Chetan J V.Very low bit rate speech coding using segmentation[M].Bombay:Indian Institute of Technology,2005. 被引量:1
  • 6Renals S,McKelvie D,Mclnnes F.A comparative study of continuous speech recognition using neural networks and hidden Markov models[C]// Proc.of IEEE ICASSP.1991,1:369-372. 被引量:1
  • 7Grayden D B,Scordilis M S.Phonemic segmentation of fluent speech[C]// Proc.of ICASSP.1994,1:73-76. 被引量:1
  • 8Zue V W.The use of speech of knowledge in automatic speech recognition[M].USA:Morgan Kaufmann Publishers Inc.,1990. 被引量:1
  • 9Krishnamurthy A K,Ahalt S C,Melton D E,et al.Neural networks for vector quantization of speech and images[J].Selected Areas in Communications,1990,8(8):1449-1457. 被引量:1
  • 10Zioko B,Manandhar S,Wilson R C.Phoneme segmentation of speech[C]// Pattern Recognition 2006 ICPR.2006:282-285. 被引量:1

引证文献8

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部