摘要
将非均匀介质密度及Lame系数的识别作为弹性波方程系数反问题,求残差最小,并应用弹性波正演的有限元解及摄动法,使反问题求解转化为二次规划问题;应用Lemke算法求解二次规划问题,并以解为新的初始值重复上述过程,可迭代确定介质的密度和Lame系数。该方法计算效率较高;可引入介质构造的其他勘探信息,进行联合反演。
Identification of the density and Lame parameters in inhomogeneous media is taken as aninverse problem of coefficient of elastic wave equation here. The inverse problem is transformedinto a quadratic programming problem by minimizing residual with peturbation and finite elementmethod solution of elastic wave equation,and is solved by Lemke algorithm. The density and Lame parameters can be iteratively determined through taking the solution as a new background value and recurring above process. The method presented here is efficient for computation and can be applied to joint inversion with other prospecting information.
出处
《大连理工大学学报》
CAS
CSCD
北大核心
1994年第3期273-279,共7页
Journal of Dalian University of Technology
基金
国家自然科学基金
关键词
参数识别
有限元法
地震勘探
identification of parameters
elastic wave
finite element method
seismic prospecting/inverse problem