摘要
本文为文献[1]的方法提供了理论依据,并且将其应用范围推广到所有只具有正实根的一般高次代数方程。证明了该方法的每次迭代求解过程等价于牛顿迭代法,总体解法上具有渐近收敛性。克服了牛顿迭代法依赖于初值、波动和可能出现的不收敛等缺点.
This paper offers theorytic basis for refrence [1]. It can alsobe applied to all of n-th degree in one variable equations,f_n(λ) = 0. The method posesses the advantages of higher accuracyas well as less and simpler computation. It is proved that thismethod is not only equal to Newton iteration mathod, but alsodoesn't have the wave and other defects that may occur in Newton method.
出处
《长沙铁道学院学报》
CSCD
1994年第2期96-102,共7页
Journal of Changsha Railway University
关键词
高次方程
渐近解
牛顿迭代法
N-th degree in one variable equation, Asyymptotic solution,Newton iteration method