摘要
引入(m,r)-正交(g,f)-因子分解的概念,证明了若G是(mg+(m-1)r,mf-(m-1)r)-图,则(i)当g≥r时,G是随机(m,r)-正交的(g,f)-可因子化图;(i)对G的任一有mr条边的星H,G的(g,f)-因子分解与H随机(m,r)-正交.
The concept of (m,r) orthogonal ( g,f) factorization is introduced.It is proved that,if G is an (mg+(m-1)r),mf-(m-1)r ) graph,then (i) When g≥r,G is a random (m,r) orthogonal (g,f) factorizable graph; (ii) For any mr star H of G , the (g,f) factorization of G is random ( m,r) orthogonal to H.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1998年第3期311-318,共8页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
关键词
图
因子分解
随机正交
Graph,Factorization,Random Orthogonal.