摘要
设X1,X2,...,Xn为非负随机变量,相互独立具有共同的分布函数F(t),Y1,Y2,...,Yn是相应的干扰随机变量,非负,相互独立具有共同的分布G(t),并且Xi与Yi也相互独立,文章在仅能观察到Zi=min(Xi,Yi),δi=I(Xi≤Yi),i=1,2,...,n和假设G已知的情况下,分别定义了F的均值和方差的估计量,并求出了估计量的近似分布.
Let X 1,X 2,...,X n be nonnegative,independent,and identically distributed random variables with a common distribution function F(t) ,associated with each X i is an independent censoring variable Y i ,and Y 1,Y 2,...,Y n are assumed nonnegative,independent,and identically distributed random variables with a common distribution function G(t) ,subject to right censoring by Y ,the observations are pairs:(Z i,δ i),i=1,2,...,n. with Z i= min (X i,Y i) and δ i=1,X i≤Y i, 0,X i>Y i.\ \ Let G(t) be known,in this paper,the author defines the estimators of mean and variance of the unknown distribution function F(t) ,and obtains the approximative distributions of the estimators.
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
1998年第2期159-166,共8页
Applied Mathematics A Journal of Chinese Universities(Ser.A)