摘要
Engineering the surfaces of components to improve the life and performance of parts used in automotive and aerospace engineering is the active area of research. Suitable Thermal/ Mechanical/Thermo mechanical surface engineering treatments will produce extensive rearrangement of atoms in metals and alloys and corresponding marked variations in Physical, Chemical and Mechanical properties. Among the more important of these treatments are heat treatment processes such as hardening by Quenching, Induction hardening and Case Carburizing which rely on phase transformations to produce desired changes in mechanical properties. Other processes where phase transformation occur are casting, welding and machining etc. [1] Phase transformation may be homogeneous or heterogeneous. Homogeneous involves rearrangements in the structure of the material taking place simultaneously in all parts of the solid, while the heterogeneous transformation involves structural changes which are more localized. Alternatively they could be called as Isothermal and Nonisothermal transformation. But irrespective of the classification, these transformations alter the structure of the material giving rise to changes in the mechanical and physical properties of the processed material. It is of interest to review some consequences of surface modification in isothermal (Normalizing) and nonisothermal transformations (Machining) of low carbon steels.
Engineering the surfaces of components to improve the life and performance of parts used in automotive and aerospace engineering is the active area of research. Suitable Thermal/ Mechanical/Thermo mechanical surface engineering treatments will produce extensive rearrangement of atoms in metals and alloys and corresponding marked variations in Physical, Chemical and Mechanical properties. Among the more important of these treatments are heat treatment processes such as hardening by Quenching, Induction hardening and Case Carburizing which rely on phase transformations to produce desired changes in mechanical properties. Other processes where phase transformation occur are casting, welding and machining etc. [1] Phase transformation may be homogeneous or heterogeneous. Homogeneous involves rearrangements in the structure of the material taking place simultaneously in all parts of the solid, while the heterogeneous transformation involves structural changes which are more localized. Alternatively they could be called as Isothermal and Nonisothermal transformation. But irrespective of the classification, these transformations alter the structure of the material giving rise to changes in the mechanical and physical properties of the processed material. It is of interest to review some consequences of surface modification in isothermal (Normalizing) and nonisothermal transformations (Machining) of low carbon steels.
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2004年第05B期1329-1332,共4页
Transactions of Materials and Heat Treatment
关键词
正火钢
研磨硬化
比能
能量区别速率
Normalizing, Turn hardening, grind hardening, quality, specific energy, energy partition ratio