摘要
Free-standing diamond films, deposited using DC Arc Plasma Jet CVD method onto graphite substrates with titanium interlayers, have been investigated. The Ti interlayers were deposited by arc ion plating equipments. The thickness, morphology and composite phase of Ti interlayers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The titanium carbide (TiC) was detected in both sides of the interlayers, which played an important role with respect to reasonable adhesion with film and diamond nucleation. The semi-translucent diamond films were characterized by SEM and Raman spectrum. The sharp diamond peak with low intensity of amorphous carbon shows that diamond films have very high quality. The overall results suggest that plating Ti interlayer on graphite substrate is an effective way to obtain optical grade free-standing diamond films.
Free-standing diamond films, deposited using DC Arc Plasma Jet CVD method onto graphite substrates with titanium interlayers, have been investigated. The Ti interlayers were deposited by arc ion plating equipments. The thickness, morphology and composite phase of Ti interlayers were examined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The titanium carbide (TiC) was detected in both sides of the interlayers, which played an important role with respect to reasonable adhesion with film and diamond nucleation. The semi-translucent diamond films were characterized by SEM and Raman spectrum. The sharp diamond peak with low intensity of amorphous carbon shows that diamond films have very high quality. The overall results suggest that plating Ti interlayer on graphite substrate is an effective way to obtain optical grade free-standing diamond films.
出处
《材料热处理学报》
EI
CAS
CSCD
北大核心
2004年第05B期899-901,共3页
Transactions of Materials and Heat Treatment
基金
financially supported by the Graduate Student Foundation of University of Science and Technology Beijing
National Natural Science Foundation of China
关键词
CVD
金刚石薄膜
石墨衬底
钛间界层
free-standing diamond films, Ti interlayer, graphite substrate, CVD