期刊文献+

基于最小生成树的基因分类算法 被引量:1

Gene Classification Algorithm Based on Minimum Spanning Tree
下载PDF
导出
摘要 随着基因芯片技术的快速发展以及其在基因表达分析等过程中的应用,产生了大量的基因表达谱数据,如何处理和分析这些数据并从中提取出有价值的生物学信息成为一个极为重要的课题,基因分类是进行基因数据处理的常用方法。本文首先利用主成分分析法(PCA)把基因的多个属性转化为少数几个综合属性,将基因表达谱数据映射成一个带权图,并将图论的最小生成树理论引入基因分类分析方法,然后设计了基于最小生成树的基因分类算法,理论分析和仿真结果表明了该算法的可行性和有效性。 With the high speed of the development of microarray technology, the application of it cause huge volumes of gene expression profile data. It is important how to handle and analyze these data and to extract some valuable information from them. The gene classification is a common method for gene expression data processing. In this paper, firstly multi-properties of gene change to several principal component by the Principal Component Analysis (PCA), and the gene expression profile data that is changed to network, the Minimum Spanning Tree, a graph-theoretic approach, are dealt with; then gene classification algorithm based Minimum Spanning Trees is designed. The theoretic analysis and the simulation results suggest that the scheme is feasible and effective.
出处 《湖南人文科技学院学报》 2004年第6期131-133,共3页 Journal of Hunan University of Humanities,Science and Technology
关键词 基因表达谱数据 最小生成树 基因分类算法 主成分分析 生物信息学 gene expression profile data minimum spanning tree gene classification principal component analysis
  • 相关文献

参考文献9

  • 1[1]XWen,SFubrman,GSMDBC arretal.Large-scaletem poralgene expression mapping of central nervous systemd evelopment[M].The National Academy of Science, N W, 1998. 被引量:1
  • 2[2]M B Eise, P T Spellman, P O Brown et al.Cluster analysis and display of gene-wide expression patterns[M].The National Academy of Science, N W.1998. 被引量:1
  • 3[3]R Herwig, A J Poustka, C Miiller et al.Large-scale clustering of cDNA-fingerprinting data[M].The National Academy of Science, N W.1999. 被引量:1
  • 4[4]P Tamayo, D slonim, J Mesirov et al.Interpreting Patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation[M].The National Academy of Science, N W.1999. 被引量:1
  • 5[5]Jiawei Huan, Micheline Kamber .Data Mining:Concept and Techniques[M].San Mateo, CA: Morgan-Kaufmann,2000. 被引量:1
  • 6[6]Gen Hori, Masato Inoue, Shin-ichi Nishimura and Hiroyuki Nakahara Blind Gene Classification- An ICA-based Gene Classification/Clustering Method- RIKEN BSI BSIS Technical Report No.02-5. 被引量:1
  • 7[7]M.P.S.Brown, W.N.Grundy, D.Lin, N.Cristianini, C.W.Sugnet, T.S.Furey, M.Ares, Jr., and D.Haussler.Knowledge-based analysis of microarray gene expression data by using support vector machines[J].In Proc.Natl.Acad.Sci., January 2000,volume 97, pages 262–267. 被引量:1
  • 8[8]Liebermeister,W.Linear modes of gene expression determined by independent component analysis[J].Bioinformatics, (2002) 18(1). 被引量:1
  • 9[9]Chu,S., DeRisi,J., Eisen,M., Mulholland,J., Botstein,D., Brown,P.O.and Herskowitz,I.The transcriptional program of sporulation in budding yeast[J].Science, (1998) 282,699-705. 被引量:1

同被引文献19

  • 1马燕,范植华.基于神经网络的基因分类器[J].计算机工程与设计,2005,26(2):308-311. 被引量:15
  • 2张英,苏宏业,褚健.基于模糊最小二乘支持向量机的软测量建模[J].控制与决策,2005,20(6):621-624. 被引量:27
  • 3蔡立军,林亚平,卢新国,易叶青,李小龙.基于遗传算法的基因分类[J].电子学报,2006,34(11):2115-2119. 被引量:5
  • 4BRAZMA A,HINGAMP P, QUACKENBUSH J, et ol. Minimum information about a microarray experiment (MIAME) toward standards for microarray data[ J ]. Nature Genetics, 2001,29 (4) :365-371. 被引量:1
  • 5VAPNIK V N. The nature of statistical learning theory [ M ]. New York : Spring-Verlag, 1995. 被引量:1
  • 6SUYKENS J A K, VANDERWALLE J. Least squares support vector machine classifiers [ J]. Neural Processing Letters, 1998, 9 (3) : 293- 300. 被引量:1
  • 7SUYKENS J A K, LUKAS L, VANDERWALLE J. Sparse approximation using least squares support vector machine[ C]//Proe of IEEE International Symposium on Circuit and Systems. Geneva, Switzerland : IEEE, 2000:757- 760. 被引量:1
  • 8LIN Chun, WANG Sheng-de. Fuzzy support vector machines [ J]. IEEE Transactions on Neural Networks. 2002,13(2) :464-471. 被引量:1
  • 9HUANG Han-pang, LIU Y H. Fuzzy support vector machines for pattern recognition and data mining[ J], International Journal of Fuzzy Systems, 2002,4(3) :826- 835. 被引量:1
  • 10ZHANG Xue-gong. Using class-center vectors to build support vector machines[ C]//Proc of IEEE NNSP' 99. Washington DC: [ s. n. ], 1999: 3-11. 被引量:1

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部