摘要
在忽略体积变形的情况下进行水平图形硐室变形特性研究,建议采用分数代数 Kelvin 本构关系模拟岩体的粘弹性,提出了一种分析粘弹性岩体中水平圆形硐室变形特性的新思路,讨论了硐室位移及应变随时间变化的规律并与经典的 Kelvin模型进行了比较。从分析的结果表明,分数代数能很好地模拟出粘弹性体松驰特性,通过改变分数代数的阶数又可以模拟各种粘弹性岩体、比经典粘弹性模型具有更大的适用范围。
The mechanical behavior of the horizontal round adits in viscoelastic rock was studied by fractional Kelvin constitutive law. The incompression of viscoelastic rock is assumed. And the analytical results were compared with those from classical Kelvin model. Therefore a new way to study the related subjects in viscoelastic rocks was proposed. The fractional derivative model can model any viscoelastic rock mass and its relaxation properties, and which have a wider area than classical model.
出处
《岩土力学》
EI
CAS
CSCD
北大核心
2005年第2期287-289,共3页
Rock and Soil Mechanics
关键词
分数代数
粘弹性
Mittag-Leffler函数
Deformation
Mathematical models
Rock mechanics
Underground structures
Viscoelasticity
Wall rock